
MODULE 2 

 

INTRODUCTION TO SOFTWARE COST ESTIMATION  

 

Estimating the cost of software product is one of the most difficult and error-prone tasks in software 

engineering. It is difficult to make an accurate cost estimate during the planning phase of software 

development. 

 

A preliminary estimate is prepared during the planning phase and presented at the project feasibility 

review. An improved estimate is presented at the software requirements review, and the final estimate 

is presented at the preliminary design review. Each estimate is a refinement of the previous one, and 

is based on the additional information gained as a result of additional work activities. 

  

SOFTWARE COST FACTORS  

 

The factors that influence the cost of a software product are Programmer Ability, Product Complexity, 

Product Size, Available Time, Required Reliability, Level of Technology. Primary among the cost 

factors are the individual abilities of project personnel and their familiarity with the application area; 

the complexity of the product; the size of the product, the available time, the required level of 

reliability; the level of technology utilized, and the availability, familiarity, and stability of the system 

used to develop the product. 

 

Programmer Ability 

A well-known experiment conducted in 1968 by Harold Sackman and colleagues. It determines the 

relative influence of batch and time-shared access on programmer productivity. Twelve experienced 

programmers were each given two programming problems to solve, some using batch facilities and 

some using time-sharing.  

 

The differences between best and worst performance were facto9rs of 6 to 1 in program size, 8 to 1 in 

execution time, 9 to 1 in development time, 18 to 1 in coding time, and 28 to 1 in debugging time. On 

very large projects, the differences in individual programmer ability will tend to average out, but on 

projects utilizing five or fewer programmers, individual differences in ability can be significant. 

 

 Product Complexity 

There are three categories of software product: Application Programs, which include data 

processing and scientific programs; Utility Programs, such as compilers, linkage editors, and 

inventory systems; and System Programs, such as database management systems, operating 

systems, and real-time systems. 

 

Brooks states that utility programs are three times as difficult to write as application programs, and 

that system programs are three times as difficult to write as utility programs. His levels of product 

complexity are thus 1-3-9 for applications-utility-systems programs. 

 

Boehm uses three levels of product complexity and provides equations to predict total programmer-

months of effort, PM, in terms of the number of thousands of delivered source instruction, KDSI, in the 

product. Programmer cost for a software project can be obtained by multiplying the effort in 

programmer-months by the cost per programmer-month. The equations were derived by examining 

historical data from a large number of actual projects. In Boehm’s terminology, the three levels of 

product complexity are organic, semidetached, and embedded programs.  

Application programs: PM = 2.4*(KDSI)**1.05 

Utility programs: PM = 3.0*(KDSI)**1.12 

Systems programs: PM = 3.6*(KDSI)**1.20 



development time for a program is  

Application programs: TDEV = 2.5*(PM)**0.38 

Utility programs: TDEV = 2.5*(PM)**0.35 

Systems programs: TDEV = 2.5*(PM)**0.32 

 

Given the total programmer-months for a project and the nominal development time required, the 

average staffing level can be obtained by simple divisions.  

 

For our 60 KDSI program, we obtain the following results: 

Application programs: 176.6 PM/17.85 MO = 9.9 programmers 

Utility programs: 294 PM/18.3 MO = 16 programmers 

Systems programs: 489.6 PM/18.1 MO = 27 programmers 

 

One of the common failures in estimating the number of source instructions in a software product is to 

underestimate the amount of housekeeping code required. Housekeeping code is that portion of the 

source code that handles input/output interactive user communication, human interface engineering, 

and error checking and error handling. 

 

 Product Size 

A large software product is more expensive to develop than a small one. Boehm’s equations indicate 

that the rate of increase in required effort grows with the number of source instructions at an 

exponential rate slightly greater than 1. Some investigators believe that the rate of increase in effort 

grows at an exponential rate slightly less than 1, but most use an exponent in the range of 1.05 to 

1.83. 

                                                                                                                                                                                                            

 Available Time 

Total project effort is sensitive to the calendar time available for project completion. Several 

investigators agree that software projects require more total effort if development time is compressed 

or expanded from the optimal time. The most striking feature is the Putnam curve. According to 

Putnam, project effort is inversely proportional to the fourth power of development time, E = k/(Td**4). 

This curve indicates an extreme penalty for schedule compression and an extreme reward for 

expanding the project schedule. 

 

Putnam also states that the development schedule cannot be compressed below about 86% of the 

nominal schedule, regardless of the people or resources utilized.  

 

In a study of 63 software projects, Boehm found that only four had compression factors less than 75% 

of the development time predicted by his cost estimation model. Boehm states: “There is a limit 

beyond which a software project cannot reduce its schedule by buying more personnel and 

equipment. This limit occurs roughly at 75% of the nominal schedule”. 

 

 Required Level of Reliability 

Software reliability can be defined as the probability that a program will perform a required function 

under stated conditions for a stated period of time. Reliability can be expressed in terms of accuracy, 

robustness, completeness, and consistency of the source code. Reliability characteristics can be built 

into a software product, but there is a cost associated with the increased level of analysis, design, 

implementation, and verification and validation effort that must be exerted to ensure high reliability. 

The multipliers range from 0.75 for very low reliability to 1.4 for very high reliability. The effort ratio is 

thus 1.87 (1.4/0.75). 

 

Level of Technology 



The level of technology in a software development project is reflected by the programming language, 

the abstract machine (hardware plus software), the programming practices, and the software tools 

used. It is well known that the number of source instructions written per day is largely independent of 

the language used, and that program statements written in high-level languages such as FORTRAN 

and Pascal expand into several machine-level statements. Use of high-level language instead of 

assemble language thus increases programmer productivity by a factor of 5 to 10.  

 

The type-checking rules and self-documenting aspects of high-level languages improve the reliability 

and modifiability. Ada provide additional features to improve programmer productivity and software 

reliability. These features include strong type-checking, data abstraction, separate compilation, 

exception handling, interrupt handling, and concurrency mechanisms.  

 

Modern programming practices include use of systematic analysis and design techniques, structured 

design notations, walkthroughs and inspections, structured coding, systematic testing, and a program 

development library.  

 

Software tools range from elementary tools, such as assemblers and basic debugging aids, to 

compilers and linkage editors, to interactive text editors and database management system,s to 

program design language processors and requirements specification analyzers, to fully integrated 

development environments that include configuration management and automated verification tools.  

 

The use of modern practices and the use of modern development tools can reduce programming 

effort to 0.67 (0.82/1.24). 

 

SOFTWARE COST ESTIMATION TECHNIQUES  

Within most organizations, software cost estimates are based on past performance. Historical data 

are used to identify cost factors. Cost and productivity data must be collected on current projects in 

order to estimate future ones. It can be done either top-down or bottom-up.  

 

Top down estimation first focuses on system-level costs, such as computing resources and 

personnel required to develop the system, the costs of configuration management, quality assurance, 

system integration, training, and publications. Personnel costs are estimated by examining the cost of 

similar past projects. 

 

Bottom up estimation first estimates the cost to develop each module or subsystem. Those costs 

are combined to arrive at an overall estimate.  

 

 Expert Judgement 

The most widely used cost estimation technique is expert judgement, which is an top-down estimation 

technique. Expert judgement relies on the experience, background, and business sense of one or 

more key people in the organization. 

 

An expert might arrive at a cost estimate in the following manner: The system to be developed is a 

process control system similar to one that was developed last year in 10 months at a cost of $1 

million. The new system has similar control functions, but has 25 percent more activities to control; 

thus, we will increase our time and cost estimates by 25 percent. We will use the same computer and 

external sensing/controlling devices; and many of the same people are available to develop the new 

system, so we can reduce our estimate by 20 percent.  

 

We can reuse much of low-level code from the previous product, which reduces the time and cost 

estimates by 25 percent. The net effect of these considerations is a time and cost estimates by 20 

percent, which results in an estimate of $800,000 and 8 months development time. The customer has 



budgeted $1 million and 1 year delivery time for the system. Therefore, we add a small margin of 

safety and bid the system at $850,000 and 9 months development time. 

 

The biggest advantage of expert judgement, namely, experience, can also be a liability. The expert 

may be confident that the project is similar to a previous one. Groups of experts sometimes prepare a 

consensus estimate to minimize individual oversights and lack of familiarity.  

 

The major disadvantage of group estimation is the effect that interpersonal group dynamics may have 

on individuals in the group. 

 

 Delphi Cost Estimation 

The Delphi technique was developed by Rand Corporation in 1948 to gain expert consensus without 

introducing the adverse side effects of group meetings. The Delphi technique can be adapted to 

software cost estimation in the following manner: 

 

1. A coordinator provides each estimator with the System Definition document and a form for 

recording a cost estimate. 

2. Estimators study the definition and complete their estimates anonymously. They may ask 

questions of the coordinator, but they do not discuss their estimates with one another. 

3. The coordinator prepares and distributes a summary of the estimators’ responses, and 

includes any ususual rationales noted by the estimators. 

4. Estimators complete another estimate, again anonymously, using the results from the 

previous estimate. Estimators whose estimates differ sharply from the group may be asked, 

anonymously, to provide justification for their estimates. 

5. The process is iterated for as many rounds as required. No group discussion is allowed 

during the entire process. 

 

 Work Breakdown Structures 

Expert judgement and group consensus are top-down estimation techniques. The work breakdown 

structure method is a bottom-up estimation tool. A work breakdown structure is a hierarchical chart 

that accounts for the individual parts of a system. A WBS chart can indicate either product hierarchy 

or process hierarchy. 

 
A product work breakdown structure 



 
A process work breakdown structure 

 

Product hierarchy identifies the product components and indicates the manner in which the 

components are interconnected. A WBS chart of process hierarchy identifies the work activities and 

the relationships among those activities. Using WBS technique, costs are estimated by assigning 

costs to each individual component in the chart and summing the costs.  

 

Some planners use both product and process WBS chart for cost estimation. The primary advantages 

of the WBS technique are in identifying and accounting for various process and product factors, and 

in making explicit exactly which costs are included in the estimate.  

 

 Algorithmic Cost Models 

Algorithmic cost estimators compute the estimated cost of a software system as the sum of the costs 

of the modules and subsystems that comprise the system. Algorithmic models are thus bottom-up 

estimators. 

 

The Constructive Cost Model (COCOMO) is an algorithmic cost model described by Boehm in 1970 

based on study of 63 projects. COCOMO is a regression model based on number of Lines of Code 

(LOC). COCOMO is based on procedural cost estimate model. COCOMO is used to reliably predict 

various parameters associated with making a project such as size, effort, cost, time and quality.  

Boehm uses three levels of product complexity and provides equations to predict total programmer-

months of effort, PM, in terms of the number of thousands of delivered source instruction, KDSI, in the 

product. Programmer cost for a software project can be obtained by multiplying the effort in 

programmer-months by the cost per programmer-month. The equations were derived by examining 

historical data from a large number of actual projects.  

 

In Boehm’s terminology, the three levels of product complexity are organic, semidetached, and 

embedded programs.  

Application programs: PM = 2.4*(KDSI)**1.05 

Utility programs: PM = 3.0*(KDSI)**1.12 

Systems programs: PM = 3.6*(KDSI)**1.20 

The development time for a program is  

Application programs: TDEV = 2.5*(PM)**0.38 

Utility programs: TDEV = 2.5*(PM)**0.35 

Systems programs: TDEV = 2.5*(PM)**0.32 

 

Given the total programmer-months for a project and the nominal development time required, the 

average staffing level can be obtained by simple divisions. For our 60 KDSI program, we obtain the 

following results: 

Application programs: 176.6 PM/17.85 MO = 9.9 programmers 

Utility programs: 294 PM/18.3 MO = 16 programmers 

Systems programs: 489.6 PM/18.1 MO = 27 programmers 

 



COCOMO Effort Multipliers: 

Multiplier Range of values 

Product attributes 

Required reliability 

Database size 

Product complexity 

 

0.75 to 1.40 

0.94 to 1.16 

0.70 to 1.65 

Computer attributes  

Execution time constraint 

Main storage constraint 

Virtual machine volatility 

Computer turnaround time 

 

1.00 to 1.66 

1.00 to 1.56 

0.87 to 1.30 

0.87 to 1.15 

Personnel attributes 

Analyst capability 

Programmer capability 

Applications experience 

Virtual machine experience 

Programming language experience 

 

1.46 to 0.71 

1.42 to 0.70 

1.29 to 0.82 

1.21 to 0.90 

1.14 to 0.95 

Project attributes 

Use of modern programming practices 

Use of software tools 

Required development schedule 

 

1.24 to 0.82 

1.24 to 0.83 

1.23 to 1.0 

 

 

Effort multipliers are used to adjust the estimate for product attributes, computer attributes, personnel 

attributes, and project attributes.  

 

The COCOMO equations incorporate a number of assumptions. For example, the nominal organic 

mode (application programs) equations apply in the following situations: 

 Small to medium-size projects (2K to 32K DSI) 

 Familiar applications area 

 Stable, well-understood virtual machine  

 In-house development effort 

 

Effort multipliers are used to modify these assumptions. The following activities are covered by the 

estimates: 

 Covers design through acceptance testing 

 Includes cost of documentation and reviews 

 Includes cost of project manager and program librarian 

 

The effort estimators exclude planning and analysis costs, installation and training costs, and the cost 

of secretaries, janitors, and computer operators. The DSI estimate includes job control statements 

and source statements, but excludes comments and unmodified utility routines.  

 

Other assumptions of software projects estimated by COCOMO: 

 Careful definition and validation of requirements is performed by a small number of capable 

people. 

 The requirements remain stable throughout the project.  

 Careful definition and validation of the architectural design is performed by a small number of 

capable people. 

 Detailed design, coding, and unit testing are performed in parallel by groups of programmers 

working in teams. 

 Integration testing is based on early test planning. 



 Interface errors are mostly found by unit testing and by inspections and walkthroughs before 

integration testing. 

 Documentation is performed incrementally as part of the development process. 

 

In other words, systematic techniques of software engineering are used throughout the development 

process. 

COCOMO can also be used to investigate trade-offs in the development process by performing 

sensitivity analysis on the cost estimate.  

 

Cost estimation procedure using COCOMO: 

1. Identify all subsystems and modules in the project. 

2. Estimate the size of each module and calculate the size of each subsystem and the total 

system. 

3. Specify module-level effort multipliers for each module. The module-level multipliers are: 

product complexity, programmer capability, virtual machine experience, and programming 

language experience. 

4. Compute the module effort and development time estimates for each module, using the 

nominal estimator equations and the module-level effort multipliers. 

5. Specify the remaining 11 effort multipliers for each subsystem. 

6. From steps 4 and 5, compute the estimated effort and development time for each subsystem. 

7. From step 6, compute the total system effort and development time. 

8. Perform a sensitivity analysis on the estimate to establish trade-off benefits. 

9. Add other development costs, such as planning and analysis, that are not included in the 

estimate. 

10. Compare the estimate with one developed by top-down Delphi estimation. Identify and rectify 

the differences in the estimates. 

 

Outcomes of COCOMO: 

1. Effort: Amount of labour that will be required to complete a task. It is measured in person-

months unit. 

2. Schedule: Amount of time required for completion of job, proportional to the effort put. It is 

measured in units of time such as weeks, months. 

 

The greatest advantage of COCOMO is that the model can be used to gain insight into the cost 

factors within an organization. Data can be collected and analyzed, new factors can be identified, and 

the effort multipliers can be adjusted. 

 

 STAFFING LEVEL ESTIMATION  

The number of personnel required throughout a software development project is not constant. 

Typically, planning and analysis are performed by a small group of people, architectural 

design by a larger, but still small, group, and detailed design by a larger number of people. 

Implementation and system testing require the largest numbers of people. The early phase of 

maintenance may require numerous personnel, but the number should decrease in a short 

time. In the absence of major enhancement or adaptation, the number of personnel for 

maintenance should remain small. 



 
Cycles in a research and development project 

 

In 1958, Norden observed that research and development projects follow a cycle of planning, design, 

prototype, development, and use, with the corresponding personnel utilization. The sum of the areas 

under the curves can be approximated by the Rayleigh equation. Any particular point in Rayleigh 

curve represents the number of full-time equivalent personnel required at that instant in time. 

 

 
The Rayleigh curve of effort vs. time 

 

 
Putnam‟s interpretation of the Rayleigh Curve 

 

In 1976, Putnam reported that the personnel level of effort required throughout the life cycle of 

a software product has a similar envelope. Putnam studied 50 Army software projects and 150 

other projects to determine how the Rayleigh curve can be used to describe the software life 

cycle. 

 

Boehm also presents the distribution of effort and schedule in a software development project. 



 
Distribution of effort for application programs 

 

 
Distribution of effort, schedule, and personnel 

 

 ESTIMATING SOFTWARE MAINTENANCE COSTS  

Software maintenance typically requires 40-60%, and in some cases 90%, of the total life-cycle 

effort devoted to a software product. Maintenance activities include adding enhancements to 

the product, adapting the product to new processing environments, and correcting problems. 

 

A widely used distribution of maintenance activities is 60% for enhancements, 20% for 

adaptation, and 20% for error correction. In a survey of 487 business data processing 

installations, Lientz and Swanson determined that the typical level of effort devoted to 

software maintenance was around 50% of total life-cycle effort, and that the distribution of 

maintenance activities was 51.3% for enhancement, 23.6% for adaptation, 21.7% for repair, and 

3.4% for other. 

Activity % Effort 

Enhancement 

Improved Efficiency 

Improved Documentation 

User Enhancements 

51.3 

4.0 

5.5 

41.8 

Adaptation 

Input data, files 

Hardware, Operating System 

23.6 

17.4 

6.2 

Corrections 

Emergency Fixes 

Scheduled Fixes 

21.7 

12.4 

9.3 

Others 3.4 

Maintenance effort distribution 

Lientz and Swanson determined that the maintenance programmer in a business data 

processing installation maintains 32K source instructions. For real-time and aerospace 

software, numbers in the range of 8K to 10K are more typical.  

 

An estimate of the number of full-time software personnel needed for software maintenance 

can be determined by dividing the estimated number of source instructions to be maintained 



by a maintenance programmer. For example, if a maintenance programmer can maintain 32 

KDSI, then two maintenance programmers are required to maintain 64 KDSI: 

FSP = (64 KDSI)/(32 KDSI/FSP) = 2 FSPm 

 

Boehm suggests that maintenance effort can be estimated by use of an activity ratio, which is 

the number of source instructions to be added or modified in any given time period divided by 

the total number of instructions: 

ACT = (DSIadded + DSImodified)/DSItotal 

 

The activity ratio is then multiplied by the number of programmer-months required for 

development in a given time period to determine the number of programmer-months required 

for maintenance in the corresponding time period: 

PMm = ACT * MMdev 

 

A further enhancement is provided by an effort adjustment factor EAF, which recognizes that 

the effort multipliers for maintenance may be different from the effort multipliers used for 

development: 

PMm = ACT * EAF * MMdev 

 

Heavy emphasis on reliability and the use of modern programming practices during 

development may reduce the amount of effort required for maintenance, while low emphasis 

on reliability and modern practices during development may increase the difficulty of 

maintenance. 

 

THE SOFTWARE REQUIREMENTS SPECIFICATION 

The analysis phase of software development involves project planning and software 

requirements definition. The outcome of planning is recorded in the System Definition, the 

Project Plan, and the preliminary User’s Manual. The Software Requirements Specification 

records the outcome of the software requirements definition activity. 

 

The System Definition, Project Plan, and preliminary User’s Manual are concerned with the 

user and external view of the software product. The Software Requirements Specification is a 

technical specification of requirements for the software product. The goal of software 

requirements definition is to completely and consistently specify the technical requirements 

for the software product in a concise and unambiguous manner using formal notations. 

 

The Software Requirements Specification is based on the System Definition. High-level 

requirements specified during initial planning are elaborated. The requirements specification 

will state the “what” of the software product without implying “how”. Software design is 

concerned with specifying how the product will provide the required features. 

 

The format of a requirements specification document is presented as follows: 

Section 1: Product Overview and Summary 

Section 2: Development, Operating and Maintenance Environments 

Section 3: External Interfaces and Data Flow 

Section 4: Functional Requirements 

Section 5: Performance Requirements 

Section 6: Exception Handling 

Section 7: Early Subsets and Implementation Priorities 

Section 8: Foreseeable Modifications and Enhancements 

Section 9: Acceptance Criteria 

Section 10: Design Hints and Guidelines 



Section 11: Cross-Reference Index 

Section 12: Glossary of Terms 

Format of a software requirements specification 

 

 Sections 1 and 2 present an overview of product features and summarizes the processing 

environments for development, operation and maintenance of the product.  

 Section 3 specifies the externally observable characteristics of the software product. It 

includes user displays and report formats, a summary of user commands and report 

options, data flow diagrams, and a data dictionary. 

 

 Data flow diagrams specify data sources and data sinks, data stores, transformations to be 

performed on the data, and the flow of data between sources, sinks, transformations, and 

stores.  

 A data store is a conceptual data structure, in the sense that physical implementation 

details are suppressed; only the logical characteristics of data are emphasized on a data 

flow diagram. 

 Data flow diagram can be depicted informally or by using special notation, where data 

sources and data sinks are depicted by shaded rectangles, transformations by ordinary 

rectangles and data stores by open ended rectangles. The arcs specify data flow; they are 

labeled with the names of data items whose characteristics are specified in the data 

dictionary. 

 
An informal data flow diagram 

 

 Like flowcharts, data flow diagram can be used at any level of detail. They can be 

hierarchically decomposed by specifying the inner workings of the functional nodes using 

additional data flow diagrams. Unlike flowcharts, data flow diagrams are not concerned 

with decision structure or algorithmic details. 



 
A formal data flow diagram 

 

NAME: Create 

WHERE USED: SDLP 

PURPOSE: 
Create passes a user-created design entity to the SLP processor for verification of 

syntax 

PURPOSE: 
Create passes a user-created design entity to the SLP processor for verification of 

syntax 

DERIVED 

FROM: 
User Interface Processor 

SUBITEMS: 

Name 

Uses 

Procedures 

References 

NOTES: Create contains one complete user-created design entity 

A Data dictionary entry 

 

 Entries in a data dictionary include the name of the data item, and attributes such as the 

data flow diagrams where it is used, its purpose, where it is derived from, its subitems, and 

any notes that may be appropriate. 

 Section 4 specifies the functional requirements. It is expressed in relational and state-

oriented notations specifying relationships among inputs, actions, and outputs. 

 Performance characteristics such as response time for various activities, processing time 

for various processes, throughput, primary and secondary memory constraints, required 

telecommunication bandwidth, and special items such as extraordinary security 

constraints or unusual reliability requirements are specified in Section 5. 

 Exception handling, including the actions to be taken and the messages to be displayed in 

response to undesired situations or events, is described in Section 6. 

 Section 7 specifies early subsets and implementation priorities for the system under 

development. 

 Foreseeable modifications and enhancements that may be incorporated into the product 

following initial product release are specified in Section 8. 

 The software product acceptance criteria are specified in Section 9. Acceptance criteria 

specify functional and performance tests that must be performed, and the standards to be 

applied to source code internal documentation, and external documents such as the 



design specifications, the test plan, the user‟s manual, the principles of operation, and the 

installation and maintenance procedures. 

 Section 10 contains design hints and guidelines. 

 Section 11 relates product requirements to the sources of information used in deriving the 

requirements. A cross-reference directory should be provided to index specific paragraph 

numbers in the Software Requirements Specification to specific paragraphs in the System 

Definition and the preliminary User’s Manual, and to other sources of information such as 

people or documents. 

 Section 12 provides definitions of terms that may be unfamiliar to the customer and the 

product developers. 

 

Desirable Properties: 

There are a number of desirable properties that a Software Requirements Specification should 

possess: 

1. Correct  

2. Complete  

3. Consistent 

4. Unambiguous 

5. Functional  

6. Verifiable 

7. Traceable 

8. Easily changed 

 

 An incorrect or incomplete set of requirements result in a software product that satisfies 

its requirements but does not satisfy customer needs.  

 An inconsistent specification states contradictory requirements in different parts of the 

document, while an ambiguous requirement is subject to different interpretations by 

different people.  

 Software requirements should be functional in nature; i.e., they should describe what is 

required without implying how the system will meet its requirements. This provides 

maximum flexibility for the product designers. 

 Requirements must be verifiable from two points of view; 1) Verify the requirements satisfy 

the customer‟s needs, 2) Verify the subsequent work products satisfy the requirements. 

 Finally, the requirements should be indexed, segmented, and cross-referenced to permit 

easy use and easy modification. 

 Every software requirement should be traceable to specific customer statements and to 

specific statements in the System Definition. 

 Changes will occur, and project success depends on the ability to incorporate change 

without starting over. Cross-referencing can be accomplished by referring to the 

appropriate paragraph numbers in the appropriate documents. 

 

FORMAL SPECIFICATION TECHNIQUES  

Specifying the functional characteristics of software product is one of the most important 

activities to be accomplished during requirements analysis. Formal notations have the 

advantage of being concise and unambiguous.  

 

Both relational and state-oriented notations are used to specify the functional characteristics 

of software. Relational notations are based on the concepts of entities and attributes. Entities 

are named elements in a system. Attributes are specified by applying functions and relations 

to the named entities. Attributes specify permitted operations on entities, relationships among 

entities, and data flow between entities. 

 



The state of a system is the information required to summarize the status of system entities at 

any particular point in time; given the current state and the current stimuli, the next state can 

be determined. 

 

Relational notations include implicit equations, recurrence relations, algebraic axioms, and 

regular expressions. State-oriented notations include decision tables, event tables, transition 

tables, finite-state mechanisms, and Petri nets. 

 

 Relational Notations 

 Implicit Equations 

Implicit equations state the properties of a solution without stating a solution method. For 

example, matrix inversion as  

M × M‟ = I ± E 

Matrix inversion is specified as the matrix product of the original matrix M and the inverse of 

M, M‟, yields the identity matrix I plus or minus the error matrix E, where E specifies allowable 

computational errors. 

 

Implicit specification of a square root function, SQRT, can be stated as  

(0 <= X <= Y) [ABS(SQRT(X)**2 – X) < E] 

 

States that for all (real?) values of X in the closed range 0 to Y, computing the square root of X, 

squaring it, and subtracting X results in an error value in some range. 

 

 Recurrence Relations 

A recurrence relation consists of an initial part called the basis and one or more recursive 

parts. For example, successive Fibonacci numbers are formed as the sum of the previous two 

Fibonacci numbers, where the first one is defined as 0, and the second as 1. This can be 

defined by the recurrence 

FI(0) = 0 

FI(1) = 1 

FI(N) = FI(N – 1) + FI(N – 2) for all N > 1 

 

 Algebraic Axioms 

Mathematical systems are defined by axioms. The axioms specify fundamental properties of a 

system and provide a basis for deriving additional properties that are implied by the axioms. 

These additional properties are called theorems. In order to establish a valid mathematical 

system, the set of axioms must be complete and consistent; ie., it must be possible to prove 

desired results using the axioms, and it must not be possible to prove contradictory results.  

 

A data type is characterized as a set of objects and a set of permissible operations on those 

objects. The term “abstract data type” (or “data abstraction”) refers to the fact that permissible 

operations on the data objects are emphasized, while representation details of the data objects 

are suppressed. 

 

Axiomatic specification of the last-in first-out (LIFO) property of stack objects is specified as 

follows: 

SYNTAX: 

OPERATION   DOMAIN  RANGE 

NEW   (   )    STACK 

PUSH    (STACK, ITEM)  STACK 

POP   (STACK)   STACK 

TOP   (STACK)   ITEM 



EMPTY   (STACK)   BOOLEAN 

AXIOMS: 

(stk is of type STACK, itm is of type ITEM) 

1) EMPTY(NEW) = true 

2) EMPTY(PUSH(stk, itm)) = false 

3) POP(NEW) = error 

4) TOP(NEW) = error 

5) POP(PUSH(stk, itm)) = stk 

6) TOP(PUSH(stk, itm)) = itm 

Algebraic specification of the LIFO property 

 

Intuitive definitions of the stack operations are: 

 NEW creates a new stack 

 PUSH adds a new item to the top of a stack 

 TOP returns a copy of the top item 

 POP removes the top item 

 EMPTY tests for an empty stack 

 

Operation NEW yields a newly created stack. PUSH requires two arguments, a stack and an 

item; it produces a stack. POP requires a stack as its arguments and yields a stack. TOP 

requires a stack and produces an item. EMPTY tests for an empty stack it requires a stack and 

provides a Boolean value. 

 

The axioms in the above figure can be stated in English as follows: 

1. A new stack is empty. 

2. A stack is not empty immediately after pushing an item onto it. 

3. Attempting to pop a new stack results in an error. 

4. There is no top item on a new stack. 

5. Pushing an item onto a stack and immediately popping it off leaves the stack 

unchanged. 

6. Pushing an item onto a stack and immediately requesting the top item returns the item 

just pushed onto the stack. 

 

Thus the axioms specify the fundamental characteristics of stacks in a precise and 

unambiguous manner. The intuitively defined entities NEW, PUSH, POP, TOP, and EMPTY are 

precisely described using a state-oriented approach as follows: 

NEW 

Purpose: Create a new stack 

Exception: Memory_Full = true 

Effects: Valid_Stack(NEW) = true 

Number_Items(NEW) = 0 

EMPTY(stk) 

Purpose: Test stk for empty property 

Exception: „Valid_Stack(stk)‟ = false 

Effects: if „Number_Items(stk)‟ = 0 then true else false 

PUSH(stk,item) 

Purpose: Place item on stack 

Exception: „Valid_Stack(stk)‟ = false 

       „Number_Items(stk)‟ = MAX 

Effects: if „Number_Items(stk)‟ = MAX then error 

else Number_Items(stk) = „Number_Items(stk)‟ + 1 

POP(stk) 



Purpose: Delete top item from stk 

Exception: „Valid_Stack(stk)‟ = false 

       “Number_Items(stk)‟ = 0 

Effects: if „Number_Items(stk)‟ = 0 then error else {stk = „stk‟ – TOP(stk) 

 Number_Items(stk) = „Number_Items(stk)‟ – 1} 

TOP(stk) 

Purpose: Return a copy of top item on stk 

Exception: „Valid_Stack(stk)‟ = false 

       „Number_Items(stk)‟ = 0 

Effects: if „Number_Items(stk)‟ = 0 then error 

 Else Number_Items(stk) = „Number_Items(stk)‟} 

Definition of STACK function behavior 

 

An entity delimited by quotes [eg: „Valid_Stack(stk)‟] denotes the state of the system 

immediately before the operation in which it is contained. An unquoted entity refers to the 

state of the system immediately following the containing operation. This technique combines 

the advantages of the algebraic approach (precise specification of interactions among 

operations) and the finite-state approach (precise specification of the behavior of the 

individual operations). 

 

The first-in first-out (FIFO) property of queues is specified as follows: 

SYNTAX: 

OPERATION  DOMAIN  RANGE 

 NEW   (   )    QUEUE 

 ADD   (QUEUE,ITEM)  QUEUE 

 FRONT   (QUEUE)   ITEM 

 REMOVE  (QUEUE)   QUEUE 

 EMPTY   (QUEUE)   BOOLEAN 

AXIOMS: 

 (que is of type QUEUE, itm is of type ITEM) 

1) EMPTY(NEW) = true 

2) EMPTY(ADD(que,itm)) = false 

3) FRONT(NEW) = error 

4) REMOVE(NEW) = error 

5) FRONT(ADD(que,itm)) = if EMPTY(que) then itm else FRONT(que) 

6) REMOVE(ADD(que,itm)) = if EMPTY(que) then NEW else ADD(REMOVE(que),itm) 

Algebraic specification of the FIFO property 

 

NEW creates a new queue, ADD adds an item to the rear of a queue, FRONT returns a copy of the 

front item in a queue without deleting it, REMOVE deletes the front item, and EMPTY tests for an 

empty queue.  

 

Regular Expressions 

Regular expressions can be used to specify the syntactic structure of symbol strings. Because many 

software products involve processing of symbol strings, regular expressions provide a powerful and 

widely used notation in software engineering. Every set of symbol strings specified by a regular 

expression defines a formal language. Regular expressions can thus be viewed as language 

generators. 

 

The Rules for forming regular expressions are quite simple: 

1) Atoms: The basic symbols in the alphabet of interest form regular expressions. 

2) Alternation: If R1 and R2 are regular expressions, then (R1 | R2) is a regular expression. 



3) Composition: If R1 and R2 are regular expressions, then (R1 R2) is a regular expression. 

4) Closure: If R1 is a regular expression, then (R1)* is a regular expression. 

5) Completeness: Nothing else is a regular expression. 

 

An alphabet of basic symbols provides the atoms. The alphabet is made up of whatever symbols are 

of interest in the particular application. Alternation, (R1 | R2), denotes the union of the languages (sets 

of symbol strings) specified by R1 and R2, and composition, (R1 R2), denotes the language formed 

by concatenating strings from R2 onto strings from R1. Closure, (R1)*, denotes the language formed 

by concatenating zero or more strings from R1 with zero or more strings from R1. 

 

Observe that rules 2, 3, and 4 are recursive; ie., they define regular expressions in terms of regular 

expressions. Rule 1 is the basis rule, and rule 5 completes the definition of regular expressions. 

Examples of regular expressions follow: 

1) Given atoms a and b, then a denotes the set { a } and b denotes the set { b }. 

2) Given atoms a and b, then (a | b) denotes the set { a, b }. 

3) Given atoms a, b, and c, then ( (a | b) | c) denotes the set { {a,b}, c}. 

4) Given atoms a and b, then (a b) denotes the set { ab } containing one element ab. 

5) Given atoms a, b, and c, then ( (a b) c) denotes the set { abc } containing one element abc. 

6) Given atom a, then (a)* denotes the set {e, a, aa, aaa, …}, where e denotes the empty string. 

 

Complex regular expressions can be formed by repeated application of recursion rules 2, 3, and 4: 

1) (a (b | c)) denotes {ab, ac}. 

2) (a | b)* denotes {e, a, b, aa, bb, ab, ba, aab, …} 

3) ((a (b | c)))* denotes (e, ab, ac, abab, acac, abac, acab, ababac, …} 

 

Closure, (R1)*, denotes zero or more concatenations of elements from R1. A commonly used notation 

is (R1)+, which denotes one or more concatenations of elements in R1. The “*” and “+” notations are 

called the Kleene star and Kleene plus notations. 

 

State-Oriented Notations 

 Decision Tables 

Decision tables provide a mechanism for recording complex decision logic. Decision tables are widely 

used in data processing applications and have an extensively developed literature.  

 Decision rules 

Rule 1 Rule 2 Rule 3 Rule 4 

     

(Condition stub)  (Condition entries) 

     

     

(Action stub)  (Action entries) 

     

Basic elements of a decision table 

 

A decision table is segmented into four quadrants: condition stub, condition entry, action stub, and 

action entry. The condition stub contains all of the conditions being examined. Condition entries are 

used to combine conditions into decision rules. The action stub describes the actions to be taken in 

response to decision rules, and the action entry quadrant relates decision rules to actions. 

 

In a limited-entry decision table, Y denotes “yes” , N denotes “no”, - denotes “don’t care”, and X 

denotes “perform action”. 

 



 1 2 3 4 

Credit limit is satisfactory Y N N N 

Pay experience is favorable - Y N N 

Special clearance is obtained - - Y N 

Perform approve order X X X  

Go to reject order    X 

Limited entry decision table 

 

Orders are approved if the credit limit is not exceeded, or if the credit limit is exceeded but past 

experience is good, or if a special arrangement has been made. If none of these conditions hold, the 

order is rejected. 

 

If more than one decision rule has identical (Y,N,-) entries, the table is said to be ambiguous. 

Ambiguous pairs of decision rules that specify identical actions are said to be redundant, and those 

specifying different actions are contradictory. Contradictory rules permit specification of 

nondeterministic and concurrent actions. There are 2**N combinations of conditions in a table that 

has N condition entries. 

 

 Decision rule 

 Rule 1 Rule 2 Rule 3 Rule 4 

C1 Y Y Y Y 

C2 Y N N N 

C3 N N N N 

A1 X    

A2  X   

A3   X X 

An ambiguous decision table 

 

C1 Y  N 

C2  Y N 

C3   Y 

A1  X  

A2 X   

A3   X 

An incomplete and over-specified decision table 

 

Event Tables 

Event tables specify actions to be taken when events occur under different set of conditions. A two-

dimensional event table relates actions to two variables; f(M, E) = A, where M denotes the current set 

of operating conditions, E is the event of interest, and A is the action to be taken. Tables of higher 

dimension can be used to incorporate more independent variables. 

 

An event table consists of the actions to be taken are related to the current mode of operation and the 

events that may occur within modes. Thus, if the system is in start-up mode SU and event E13 

occurs, action A16 is to be taken; f(SU, E13) = A16. Special notations can be invented to suit 

particular situations.  

 

For example, actions separated by semicolons (A14; A32) might denote A14 followed sequentially by 

A32, while actions separated by commas (A6, A2) might denote concurrent activation of A6 and A2. 



Similarly, a dash (-) might indicate no action required, while an X might indicate an impossible system 

configuration (eg., E13 cannot occur in steady-state mode). 

Mode  Event 

E13 E37 E45 … … 

Start-up A16 - A14; A32   

Steady X A6, A2 -   

Shut-down … … …   

Alarm … … …   

A two-dimensional event table 

 

Transition Tables 

Transition tables are used to specify changes in the state of a system as a function of driving forces. 

The state of a system summarizes the status of all entities in the system at a particular time. Given 

the current state and the current conditions, the next state results; if, when in state Si, condition Cj 

results in a transition to state Sk, we say f(Sj, Cj) = Sk. 

Current State Current Input 

a b 

S0 S0 S1 

S1 S1 S0 

A simple transition table 

 

Given the current state S1 and current input b, the system will go to state S0; ie., f(S1, b) = S0. A 

transition table that is augmented to indicate actions to be performed and outputs to be generated in 

the transition to the next state. 

Present state  Input Action Output Next State 

S0 a 

b 

  S0 

S1 

S1 a 

b 

  S0 

S1 

An augmented transition table 

 

Transition diagrams are alternative representations for transition tables. In a transition diagram, states 

become nodes in a directed graph and transitions are represented as arcs between nodes. Arcs are 

labeled with conditions that cause transitions.  

 

Transition diagrams and transition tables are representations for finite state automata. The theory of 

finite state automata is rich, complex, and highly developed. 

 
Transition diagram 

 

Decision tables, event tables, and transition tables are notations for specifying actions as functions of 

the conditions that initiate those actions. Decision tables specify actions in terms of complex decision 

logic, event tables relate actions to system conditions, and transition tables incorporate the concept of 

system state. 

 

Finite State Mechanisms 

Data flow diagrams, regular expressions, and transition tables can be combined to provide a powerful 

finite state mechanism for functional specification of software systems. The following figure depicts 



the data flow diagram for a software system consisting of a set of processes interconnected by data 

streams. Each of the data streams can be specified using a regular expression and each of the 

processes can be described using a transition table.  

 
A network of data streams and processes 

 

Regular expressions have been quite simple; one can describe highly complex data streams using 

regular expressions. For example, a data stream might be specified as 

(X(((X Y))* | Z) | ((((X | Y) Z)) + Y)) 

 

 

 
Specification of the “Split” process 

 

The following figure specifies a system for which the incoming data stream consists of a start marker 

Ds, followed by zero or more D11 messages, followed by zero or more D12 messages, followed by an 

end-of-data marker De. The purpose of process “split” is to route D11 messages to file F6 and D12 

messages to file F7. The transition table in the above figure specifies the action of “split”. Process split 

starts in initial state S0 and waits for input Ds.  

 

Any other input in state S0 is ignored (alternatively, other inputs could result in error processing). 

Arrival of input Ds in state S0 triggers the opening of files F6 and F7 and transition to state S1. In S1, 

D11 messages are written to F6 until either a D12 message or a De message is received (note that a 

Ds De data stream with no D11 messages and no D12 message is possible). On receipt of a D12 

message, process split closes Fchnique6, writes the message D12 to F7 and goes to state S2.  

 

In state S2, split writes zero or more D12 messages to F7, then, on receipt of the end-of-data marker, 

De, closes F7 and returns to state S0 to await the next transmission. 

 

One drawback of fine-state mechanisms is the so-called state explosion phenomenon. Complex 

systems may have large numbers of states and many combinations of input data. Specifying the 



behavior of a software system for all combinations of current state and current input can become 

unwieldy. 

 

Hierarchical decomposition is one technique for controlling the complexity of a finite-state 

specification. Using hierarchical decomposition, higher level concepts are given names, the meaning 

and validity of which are established at a lower level.  

 

Petri Nets 

Petri nets were invented in the 1960s by Carl Petri at the University of Bonn, West Germany. Petri 

nets have been used to model a wide variety of situations; they provide a graphical representation 

technique, and systematic methods have been developed for synthesizing and analyzing Petri nets.  

Petri nets were invented to overcome the limitations of finite state mechanisms in specifying 

parallelism.  

 

Concurrent Systems are designed to permit simultaneous execution of the software components, 

called tasks or processes, on multiple processors. Alternatively, execution of tasks can be interleaved 

on a single processor. Concurrent tasks must be synchronized to permit communication among tasks 

that operate at differing execution rates, to prevent simultaneous updating of shared data, and to 

prevent deadlock. Deadlock occurs when all tasks in the system are waiting for data or other 

resources that can only be supplied by tasks that are waiting on other tasks. The fundamental 

problem of concurrency are thus synchronization, mutual exclusion, and deadlock.    

      

A Petri net is represented as a bipartite directed graph. The two types of nodes in a Petri net are 

called places and transitions. Places are marked by tokens; a Perti net is characterized by an initial 

marking of places and a firing rule. A firing rule has two aspects; a transition is enabled if every input 

places has at least one token. An enabled transition can fire; When a transition fires; each input 

places of that transition loses one token, and each output places of that transition gains one token. A 

marked Petri net is formally defined as a quadruple, consisting of a set of places  P, a set of 

transitions T, a set of arcs A, and a marking M. C = (P,T,A,M), where  

p = {p1, p2, . . . Pm} 

T = {t1, t2, . . . tn }  

A ⊂ {P x T} U {T x P} = {(pi , tj ) . . . ( tk, pl) . . . } 

M: P  I; ie., M(p1, p2, . . . pm) = (i1, i2, . . . im) 

 

Marking M associates an integer number of token ik with each places pk. When a transition fires, the 

marking of places p changes from M(p) to M’(p) as follows: 

M’(p) = M(p) + 1 if p ∈  O(t) and p ∉  I(t) 

M’(p) = M(p) - 1 if p ∉  I(t) & p ∈  O(t) 

M’(p) = M(p) otherwise 

where I(t) is the set of input places of transition t and O(t) is the set of output places of transition t.  

 

A transition t is enabled if M(p) > 0 for all p ∈  I(t). 



 
Petri net model of concurrent processes t1, t2, t3 (initial marking) 

 

In the above figure, the Petri net models the indicated computation; each transition in the net 

corresponds to a task activation and places are used to synchronize processing. Completion of t0 

removes the initial token from p0 and places a token on p1, which enables the co-begin. Firing of the 

co-begin removes the token from p1 and places a token on each of p2, p3, and p4.  

 

This enables t1, t2, and t3; they can fire simultaneously or in any order. This corresponds to 

concurrent execution of tasks t1, t2, and t3. When each of tasks t1, t2, and t3 completes its 

processing, a token is placed on the corresponding output place, p5, p6, or p7. Co-end is not enabled 

until all three tasks complete their processing. Firing of co-end removes the tokens from p5, p6, and 

p7 and places a token on p8, thus enabling t4 which can then fire. 

 
A deadlocked Petri net 

 

The above figure illustrates a deadlock situation. Both t1 and t2 are waiting for the other to fire and 

neither can proceed. 

 



 
A conflict situation 

 

Conflict in Petri nets provides the basis for modeling of mutual exclusion. Conflict is illustrated in 

above figure; both t1 and t2 are enabled, but only one can fire. Firing one will disable the other.  

 

As an example of mutual exclusion, a Petri net of the producer/consumer problem is illustrated as:  

 
Initial marking for the producer/consumer Petri Net 

 

 
Semaphore solution to the producer/consumer problem 

 

LANGUAGES AND PROCESSORS FOR REQUIREMENTS SPECIFICATION 

A number of special-purpose languages and processors permit concise statement and automated 

analysis of requirements specification for software. Some are graphical in nature, while others are 

textual. Some are manually applied, and others have automated processors. 

 

PSL/PSA 



The Problem Statement Language (PSL) was developed by Professor Daniel Teichrow at the 

University of Michigan. The Problem Statement Analyzer (PSA) is the PSL processor. PSL and PSA 

were developed as components of ISDOS and so this system is sometimes referred to as the ISDOS 

system. PSL is based on a general model of systems. This model describes a system as a set of 

objects, where each object may have properties, and each property may have property values. 

Objects may be interconnected; the connections are called relationships.  

 

The objective of PSL is to permit the information appears in a Software Requirements Specification. 

In PSL, system descriptions can be divided into eight major aspects:    

1. System input/output flow 

2. System structure 

3. Data structure 

4. Data derivation 

5. System size and volume 

6. System dynamics 

7. System properties 

8. Project management 

 

The system input/output flow aspect deals with the interaction between a system and its environment. 

System structure is concerned with the hierarchies among objects in a system. The data structure 

aspect includes all the relationships that exist among data. The data derivation specifies which data 

objects are involved in particular processes in the system. Data derivation describes data 

relationships that are internal to a system.  

 

The system size and volume aspect is concerned with the size of the system and those factors that 

influence the volume of processing required. The system dynamics presents the manner in which the 

system “behaves” over time. The project management aspect requires that project-related 

information, as well as product-related information. This involves identification of the people involved, 

their responsibilities, schedules, cost estimates, etc. 

 

PSA is an automated analyzer for processing requirements stated in PSL. PSA operates on a 

database of information collected from a PSL description. The PSA system can provide reports in four 

categories: database modification reports, reference reports, summary reports, and analysis reports.  

 

Database Modification Report list changes that have been made since the last report, together with 

diagnostic and warning messages for error correction and recovery.  

 

Reference Reports include the Name List Report, which lists all the objects in the database with types 

and dates of last change. The Formatted Problem Statement Report shows properties and 

relationships for object. The Dictionary Report provides a data dictionary. 

 

Summary Reports present information collected from several relationships. The Data Base Summary 

Report provides project management information by listing the total number of objects. The Structure 

Report shows complete and partial hierarchies, and the External Picture Report depicts data flows in 

graphical form. 

 

Analysis Reports include the Contents Comparison Report, which compares the similarity of inputs 

and outputs. The Data Processing Interaction Report can be used to detect gaps in information flow 

and unused data objects. The Processing Chain Report shows the dynamic behavior of the system. 

 



 
Structure of the Problem Statement Analyzer 

 

 

 

 
Example of a PSL Formatted Problem Statement 

Advantages: 

• PSL/PSA is a useful tool for documenting & communicating software requirements. 

• PSL/PSA not only supports requirements analysis, but also supports design. 

• PSL/PSA has been used from commercial data processing applications to air defense 

systems. 

 

 RSL/REVS (Requirements Statement Language/Requirements Engineering Validation System) 

The Requirements Statement Language (RSL) was developed by TRW Defense and Space Systems 

Group to permit concise, unambiguous specification of requirements for real-time software systems. 



Requirements Engineering Validation System (REVS) processes and analyzes RSL statements; both 

RSL/REVS are components of Software Requirements Engineering Methodology (SREM). 

 

Many of the concepts in RSL are based on PSL. RSL has four primitive concepts: Elements which 

name objects; Attributes which describe the characteristics of elements; Relationships which describe 

binary relationship between elements; and Structures, which are  composed of nodes and processing 

steps. 

 

The fundamental characteristic of RSL is the flow-oriented approach used to describe real-time 

systems. RSL models the Stimulus-Response nature of process control systems. Flow approach 

provides direct testability of requirements. Flows are specified by Requirements Networks (R-NETS). 

R-NETS have both graphical & textual representations. AND node (&) specify parallel operations. OR 

node (+) have an Otherwise path. RSL includes predefined element types, relationships, attributes 

and structures.  

 

 
Graphical Representation of an R-NET 

 



 
Textual Representation of an R-NET 

 

Predefined elements include Alpha, Data, & R_NET. Alpha specifies functional characteristics of 

processing step in R-NET. Alphas are described by Inputs, Outputs, & Descriptions. Data specifies 

data elements at conceptual level: Input_To & Output_From. Attributes – Initial Value & Includes. 

Elements – Description. 

 

The three major components of REVS: A translator for RSL, A centralized data base, the Abstract 

System Semantic Model (ASSM), A set of automated tools for processing information in ASSM 

 

 
Examples of ALPHA, DATA, and ORIGINATING_REQUIREMENT 

 



 
Examples of the DEFINE attribute from RSL  

 

 
Structure of the REVS Processor 

 

ASSM is a relational database. ASSM include an interactive graphics package to specify flow paths. 

Static checkers to check completeness and consistency of the information used throughout the 

system. An automated simulation package that generates & executes simulation models of the 

system. REVS is a large, complex software tool. REVS is cost-effective only for large, complex real-

time systems. 

 

SADT (Structured Analysis and Design Technique)  

SADT was developed by D.T.Ross and colleagues @ Softech, Inc. SADT incorporates a graphical 

language & a set of methods & management guidelines for using the language called the Language 

of Structured Analysis (SA).  

 

SA language are similar to engineering blueprint systems used in civil & mechanical engineering. 

SADT model consists of an ordered set of SA diagrams. Each diagram is drawn on a single page, & 

must contain 3-6 nodes plus interconnecting arcs. Two basic types of SA diagrams: Activity diagram 

(Actigram) and Data diagram (Datagram). 

 



Actigram: nodes denote activities & arcs specify data flow. Actigram is the SA version of Data Flow 

Diagrams (DFD). Datagrams specify data objects in the nodes and activities on the arcs. Activity 

diagrams are used more frequently than data diagrams. Data diagrams are important for two reasons: 

1. To indicate all activities affected by a given data object 

2. To check the completeness and consistency of an SADT model  

 

 
Activity Diagram Components 

 

 
Data Diagram Components 

 



 
An expanded view of Activity A1 

 

 
An Activity Diagram Depicting the Requirements Analysis Activity 

 



 
Cover Sheet for an SADT Model 

 

Provides notations and set of techniques for understanding and recording complex requirements in 

clear and concise manner. Top-down methodology in decomposing high-level nodes into subordinate 

diagrams  

 

 SSA (Structured System Analysis)  

Two similar versions of SSA described by Gane and Sarson and by DeMarco. DeMarco version is 

similar to Gane and Sarson version, but it does not incorporate database concept. SSA is used in 

traditional data processing environments.  

 

SSA Uses a graphical language to build models of systems. Unlike SADT, it uses database concepts. 

SSA does not provide many structural mechanisms available in SADT. Four basic features in SSA: 

1. Data flow diagrams 

2. Data dictionaries 

3. Procedure logic representations 

4. Data store structuring techniques  

 

SSA data flow diagrams are similar to SADT actigrams. Open-ended rectangles indicate data stores. 

Labels on the arcs denote data items. Shaded rectangles depict sources and sinks. Rectangles 

indicate processing steps. Data dictionary is used to define and record data elements. Processing 

logic representations viz. decision tables & structured English – used to specify algorithmic 

processing details. Process logic representations precisely specify processing sequences that are 

understandable to customers and developers. 

 



 
A Data Flow Diagram 

 

 

 

 
Data Dictionary Entries in SSA  

 



 
An SSA Processing Logic Representation  

 

SSA can be refined to level of detailed design before the DFD & Data dictionary are completed. 

Important feature of SSA is use of a relational model to specify data flows and data stores. Relations 

are composed from fields of data records. Fields are called domains of the relation. If a record has N 

fields, the relation is called an N-tuple.  

 

GIST 

Gist is a formal specification language developed at the USC/Information Sciences Institute by 

R.Balzar & Colleagues. Gist is a textual language based on a relational model of objects and 

attributes.  

 

A Gist specification is a formal description of valid behaviors of a system. Specification is composed 

of 3 parts: 

1. Object types and & relationships between them (determines set of possible states). 

2. Actions and demons (define transitions between possible states). 

3. Constraints on states and state transitions. 

 

Steps in preparing Gist specification: 

1. Identify a collection of object types manipulated by process, described by concrete nouns. 

2. Identify individual objects within types. This is not a variables, used to describe constraints or 

dynamic aspects of a process. 

3. Identify relationships in which objects can be related to one another (include “connects to”, “is 

part of” & “derived from”). 

4. Identify types & relationships. 

5. Identify static constraints on types & relationships. Static constraints identify processing states 

that never arise. 

6. Identity actions that can change state of the process. 

7. Identify dynamic constraints. 

8. Identify active participants in the process and group them into classes. 



 
A Gist Specification 

 

Initial Operating Capability (IOC) is a prototype testing facility for software specifications. Purpose of 

IOC is to validate functional specifications by “executing” them on real test data. IOC consists of 

evaluator capable of executing specifications expressed in a subset of Gist, & programs that permit 

entering, editing, & displaying of Gist specifications. IOC permits state initialization, displaying of 

states, and interactive breakpointing and tracing of test case evaluation. Gist has well-defined, but 

rather complex syntax. 

 

Conclusion: 

• SADT & SSA do not have automated processors 

PSL/PSA  Originally developed for data processing applications. Widely used in other 

applications. 

RSL/REVS Real-time process control systems. 

SADT Interconnection structure of any large, complex system. Not restricted to software 

systems. 

SSA Gane and Sarson version used in data processing applications that have database 

requirements. DeMarco version suited to data flow analysis of software systems. 

GIST Object-oriented specification and design. Refinement of specifications into source 

code. 

 


