
MODULE 2

INTRODUCTION TO SOFTWARE COST ESTIMATION

Estimating the cost of software product is one of the most difficult and error-prone tasks in software

engineering. It is difficult to make an accurate cost estimate during the planning phase of software

development.

A preliminary estimate is prepared during the planning phase and presented at the project feasibility

review. An improved estimate is presented at the software requirements review, and the final estimate

is presented at the preliminary design review. Each estimate is a refinement of the previous one, and

is based on the additional information gained as a result of additional work activities.

SOFTWARE COST FACTORS

The factors that influence the cost of a software product are Programmer Ability, Product Complexity,

Product Size, Available Time, Required Reliability, Level of Technology. Primary among the cost

factors are the individual abilities of project personnel and their familiarity with the application area;

the complexity of the product; the size of the product, the available time, the required level of

reliability; the level of technology utilized, and the availability, familiarity, and stability of the system

used to develop the product.

Programmer Ability

A well-known experiment conducted in 1968 by Harold Sackman and colleagues. It determines the

relative influence of batch and time-shared access on programmer productivity. Twelve experienced

programmers were each given two programming problems to solve, some using batch facilities and

some using time-sharing.

The differences between best and worst performance were facto9rs of 6 to 1 in program size, 8 to 1 in

execution time, 9 to 1 in development time, 18 to 1 in coding time, and 28 to 1 in debugging time. On

very large projects, the differences in individual programmer ability will tend to average out, but on

projects utilizing five or fewer programmers, individual differences in ability can be significant.

 Product Complexity

There are three categories of software product: Application Programs, which include data

processing and scientific programs; Utility Programs, such as compilers, linkage editors, and

inventory systems; and System Programs, such as database management systems, operating

systems, and real-time systems.

Brooks states that utility programs are three times as difficult to write as application programs, and

that system programs are three times as difficult to write as utility programs. His levels of product

complexity are thus 1-3-9 for applications-utility-systems programs.

Boehm uses three levels of product complexity and provides equations to predict total programmer-

months of effort, PM, in terms of the number of thousands of delivered source instruction, KDSI, in the

product. Programmer cost for a software project can be obtained by multiplying the effort in

programmer-months by the cost per programmer-month. The equations were derived by examining

historical data from a large number of actual projects. In Boehm’s terminology, the three levels of

product complexity are organic, semidetached, and embedded programs.

Application programs: PM = 2.4*(KDSI)**1.05

Utility programs: PM = 3.0*(KDSI)**1.12

Systems programs: PM = 3.6*(KDSI)**1.20

development time for a program is

Application programs: TDEV = 2.5*(PM)**0.38

Utility programs: TDEV = 2.5*(PM)**0.35

Systems programs: TDEV = 2.5*(PM)**0.32

Given the total programmer-months for a project and the nominal development time required, the

average staffing level can be obtained by simple divisions.

For our 60 KDSI program, we obtain the following results:

Application programs: 176.6 PM/17.85 MO = 9.9 programmers

Utility programs: 294 PM/18.3 MO = 16 programmers

Systems programs: 489.6 PM/18.1 MO = 27 programmers

One of the common failures in estimating the number of source instructions in a software product is to

underestimate the amount of housekeeping code required. Housekeeping code is that portion of the

source code that handles input/output interactive user communication, human interface engineering,

and error checking and error handling.

 Product Size

A large software product is more expensive to develop than a small one. Boehm’s equations indicate

that the rate of increase in required effort grows with the number of source instructions at an

exponential rate slightly greater than 1. Some investigators believe that the rate of increase in effort

grows at an exponential rate slightly less than 1, but most use an exponent in the range of 1.05 to

1.83.

 Available Time

Total project effort is sensitive to the calendar time available for project completion. Several

investigators agree that software projects require more total effort if development time is compressed

or expanded from the optimal time. The most striking feature is the Putnam curve. According to

Putnam, project effort is inversely proportional to the fourth power of development time, E = k/(Td**4).

This curve indicates an extreme penalty for schedule compression and an extreme reward for

expanding the project schedule.

Putnam also states that the development schedule cannot be compressed below about 86% of the

nominal schedule, regardless of the people or resources utilized.

In a study of 63 software projects, Boehm found that only four had compression factors less than 75%

of the development time predicted by his cost estimation model. Boehm states: “There is a limit

beyond which a software project cannot reduce its schedule by buying more personnel and

equipment. This limit occurs roughly at 75% of the nominal schedule”.

 Required Level of Reliability

Software reliability can be defined as the probability that a program will perform a required function

under stated conditions for a stated period of time. Reliability can be expressed in terms of accuracy,

robustness, completeness, and consistency of the source code. Reliability characteristics can be built

into a software product, but there is a cost associated with the increased level of analysis, design,

implementation, and verification and validation effort that must be exerted to ensure high reliability.

The multipliers range from 0.75 for very low reliability to 1.4 for very high reliability. The effort ratio is

thus 1.87 (1.4/0.75).

Level of Technology

The level of technology in a software development project is reflected by the programming language,

the abstract machine (hardware plus software), the programming practices, and the software tools

used. It is well known that the number of source instructions written per day is largely independent of

the language used, and that program statements written in high-level languages such as FORTRAN

and Pascal expand into several machine-level statements. Use of high-level language instead of

assemble language thus increases programmer productivity by a factor of 5 to 10.

The type-checking rules and self-documenting aspects of high-level languages improve the reliability

and modifiability. Ada provide additional features to improve programmer productivity and software

reliability. These features include strong type-checking, data abstraction, separate compilation,

exception handling, interrupt handling, and concurrency mechanisms.

Modern programming practices include use of systematic analysis and design techniques, structured

design notations, walkthroughs and inspections, structured coding, systematic testing, and a program

development library.

Software tools range from elementary tools, such as assemblers and basic debugging aids, to

compilers and linkage editors, to interactive text editors and database management system,s to

program design language processors and requirements specification analyzers, to fully integrated

development environments that include configuration management and automated verification tools.

The use of modern practices and the use of modern development tools can reduce programming

effort to 0.67 (0.82/1.24).

SOFTWARE COST ESTIMATION TECHNIQUES

Within most organizations, software cost estimates are based on past performance. Historical data

are used to identify cost factors. Cost and productivity data must be collected on current projects in

order to estimate future ones. It can be done either top-down or bottom-up.

Top down estimation first focuses on system-level costs, such as computing resources and

personnel required to develop the system, the costs of configuration management, quality assurance,

system integration, training, and publications. Personnel costs are estimated by examining the cost of

similar past projects.

Bottom up estimation first estimates the cost to develop each module or subsystem. Those costs

are combined to arrive at an overall estimate.

 Expert Judgement

The most widely used cost estimation technique is expert judgement, which is an top-down estimation

technique. Expert judgement relies on the experience, background, and business sense of one or

more key people in the organization.

An expert might arrive at a cost estimate in the following manner: The system to be developed is a

process control system similar to one that was developed last year in 10 months at a cost of $1

million. The new system has similar control functions, but has 25 percent more activities to control;

thus, we will increase our time and cost estimates by 25 percent. We will use the same computer and

external sensing/controlling devices; and many of the same people are available to develop the new

system, so we can reduce our estimate by 20 percent.

We can reuse much of low-level code from the previous product, which reduces the time and cost

estimates by 25 percent. The net effect of these considerations is a time and cost estimates by 20

percent, which results in an estimate of $800,000 and 8 months development time. The customer has

budgeted $1 million and 1 year delivery time for the system. Therefore, we add a small margin of

safety and bid the system at $850,000 and 9 months development time.

The biggest advantage of expert judgement, namely, experience, can also be a liability. The expert

may be confident that the project is similar to a previous one. Groups of experts sometimes prepare a

consensus estimate to minimize individual oversights and lack of familiarity.

The major disadvantage of group estimation is the effect that interpersonal group dynamics may have

on individuals in the group.

 Delphi Cost Estimation

The Delphi technique was developed by Rand Corporation in 1948 to gain expert consensus without

introducing the adverse side effects of group meetings. The Delphi technique can be adapted to

software cost estimation in the following manner:

1. A coordinator provides each estimator with the System Definition document and a form for

recording a cost estimate.

2. Estimators study the definition and complete their estimates anonymously. They may ask

questions of the coordinator, but they do not discuss their estimates with one another.

3. The coordinator prepares and distributes a summary of the estimators’ responses, and

includes any ususual rationales noted by the estimators.

4. Estimators complete another estimate, again anonymously, using the results from the

previous estimate. Estimators whose estimates differ sharply from the group may be asked,

anonymously, to provide justification for their estimates.

5. The process is iterated for as many rounds as required. No group discussion is allowed

during the entire process.

 Work Breakdown Structures

Expert judgement and group consensus are top-down estimation techniques. The work breakdown

structure method is a bottom-up estimation tool. A work breakdown structure is a hierarchical chart

that accounts for the individual parts of a system. A WBS chart can indicate either product hierarchy

or process hierarchy.

A product work breakdown structure

A process work breakdown structure

Product hierarchy identifies the product components and indicates the manner in which the

components are interconnected. A WBS chart of process hierarchy identifies the work activities and

the relationships among those activities. Using WBS technique, costs are estimated by assigning

costs to each individual component in the chart and summing the costs.

Some planners use both product and process WBS chart for cost estimation. The primary advantages

of the WBS technique are in identifying and accounting for various process and product factors, and

in making explicit exactly which costs are included in the estimate.

 Algorithmic Cost Models

Algorithmic cost estimators compute the estimated cost of a software system as the sum of the costs

of the modules and subsystems that comprise the system. Algorithmic models are thus bottom-up

estimators.

The Constructive Cost Model (COCOMO) is an algorithmic cost model described by Boehm in 1970

based on study of 63 projects. COCOMO is a regression model based on number of Lines of Code

(LOC). COCOMO is based on procedural cost estimate model. COCOMO is used to reliably predict

various parameters associated with making a project such as size, effort, cost, time and quality.

Boehm uses three levels of product complexity and provides equations to predict total programmer-

months of effort, PM, in terms of the number of thousands of delivered source instruction, KDSI, in the

product. Programmer cost for a software project can be obtained by multiplying the effort in

programmer-months by the cost per programmer-month. The equations were derived by examining

historical data from a large number of actual projects.

In Boehm’s terminology, the three levels of product complexity are organic, semidetached, and

embedded programs.

Application programs: PM = 2.4*(KDSI)**1.05

Utility programs: PM = 3.0*(KDSI)**1.12

Systems programs: PM = 3.6*(KDSI)**1.20

The development time for a program is

Application programs: TDEV = 2.5*(PM)**0.38

Utility programs: TDEV = 2.5*(PM)**0.35

Systems programs: TDEV = 2.5*(PM)**0.32

Given the total programmer-months for a project and the nominal development time required, the

average staffing level can be obtained by simple divisions. For our 60 KDSI program, we obtain the

following results:

Application programs: 176.6 PM/17.85 MO = 9.9 programmers

Utility programs: 294 PM/18.3 MO = 16 programmers

Systems programs: 489.6 PM/18.1 MO = 27 programmers

COCOMO Effort Multipliers:

Multiplier Range of values

Product attributes

Required reliability

Database size

Product complexity

0.75 to 1.40

0.94 to 1.16

0.70 to 1.65

Computer attributes

Execution time constraint

Main storage constraint

Virtual machine volatility

Computer turnaround time

1.00 to 1.66

1.00 to 1.56

0.87 to 1.30

0.87 to 1.15

Personnel attributes

Analyst capability

Programmer capability

Applications experience

Virtual machine experience

Programming language experience

1.46 to 0.71

1.42 to 0.70

1.29 to 0.82

1.21 to 0.90

1.14 to 0.95

Project attributes

Use of modern programming practices

Use of software tools

Required development schedule

1.24 to 0.82

1.24 to 0.83

1.23 to 1.0

Effort multipliers are used to adjust the estimate for product attributes, computer attributes, personnel

attributes, and project attributes.

The COCOMO equations incorporate a number of assumptions. For example, the nominal organic

mode (application programs) equations apply in the following situations:

 Small to medium-size projects (2K to 32K DSI)

 Familiar applications area

 Stable, well-understood virtual machine

 In-house development effort

Effort multipliers are used to modify these assumptions. The following activities are covered by the

estimates:

 Covers design through acceptance testing

 Includes cost of documentation and reviews

 Includes cost of project manager and program librarian

The effort estimators exclude planning and analysis costs, installation and training costs, and the cost

of secretaries, janitors, and computer operators. The DSI estimate includes job control statements

and source statements, but excludes comments and unmodified utility routines.

Other assumptions of software projects estimated by COCOMO:

 Careful definition and validation of requirements is performed by a small number of capable

people.

 The requirements remain stable throughout the project.

 Careful definition and validation of the architectural design is performed by a small number of

capable people.

 Detailed design, coding, and unit testing are performed in parallel by groups of programmers

working in teams.

 Integration testing is based on early test planning.

 Interface errors are mostly found by unit testing and by inspections and walkthroughs before

integration testing.

 Documentation is performed incrementally as part of the development process.

In other words, systematic techniques of software engineering are used throughout the development

process.

COCOMO can also be used to investigate trade-offs in the development process by performing

sensitivity analysis on the cost estimate.

Cost estimation procedure using COCOMO:

1. Identify all subsystems and modules in the project.

2. Estimate the size of each module and calculate the size of each subsystem and the total

system.

3. Specify module-level effort multipliers for each module. The module-level multipliers are:

product complexity, programmer capability, virtual machine experience, and programming

language experience.

4. Compute the module effort and development time estimates for each module, using the

nominal estimator equations and the module-level effort multipliers.

5. Specify the remaining 11 effort multipliers for each subsystem.

6. From steps 4 and 5, compute the estimated effort and development time for each subsystem.

7. From step 6, compute the total system effort and development time.

8. Perform a sensitivity analysis on the estimate to establish trade-off benefits.

9. Add other development costs, such as planning and analysis, that are not included in the

estimate.

10. Compare the estimate with one developed by top-down Delphi estimation. Identify and rectify

the differences in the estimates.

Outcomes of COCOMO:

1. Effort: Amount of labour that will be required to complete a task. It is measured in person-

months unit.

2. Schedule: Amount of time required for completion of job, proportional to the effort put. It is

measured in units of time such as weeks, months.

The greatest advantage of COCOMO is that the model can be used to gain insight into the cost

factors within an organization. Data can be collected and analyzed, new factors can be identified, and

the effort multipliers can be adjusted.

 STAFFING LEVEL ESTIMATION

The number of personnel required throughout a software development project is not constant.

Typically, planning and analysis are performed by a small group of people, architectural

design by a larger, but still small, group, and detailed design by a larger number of people.

Implementation and system testing require the largest numbers of people. The early phase of

maintenance may require numerous personnel, but the number should decrease in a short

time. In the absence of major enhancement or adaptation, the number of personnel for

maintenance should remain small.

Cycles in a research and development project

In 1958, Norden observed that research and development projects follow a cycle of planning, design,

prototype, development, and use, with the corresponding personnel utilization. The sum of the areas

under the curves can be approximated by the Rayleigh equation. Any particular point in Rayleigh

curve represents the number of full-time equivalent personnel required at that instant in time.

The Rayleigh curve of effort vs. time

Putnam‟s interpretation of the Rayleigh Curve

In 1976, Putnam reported that the personnel level of effort required throughout the life cycle of

a software product has a similar envelope. Putnam studied 50 Army software projects and 150

other projects to determine how the Rayleigh curve can be used to describe the software life

cycle.

Boehm also presents the distribution of effort and schedule in a software development project.

Distribution of effort for application programs

Distribution of effort, schedule, and personnel

 ESTIMATING SOFTWARE MAINTENANCE COSTS

Software maintenance typically requires 40-60%, and in some cases 90%, of the total life-cycle

effort devoted to a software product. Maintenance activities include adding enhancements to

the product, adapting the product to new processing environments, and correcting problems.

A widely used distribution of maintenance activities is 60% for enhancements, 20% for

adaptation, and 20% for error correction. In a survey of 487 business data processing

installations, Lientz and Swanson determined that the typical level of effort devoted to

software maintenance was around 50% of total life-cycle effort, and that the distribution of

maintenance activities was 51.3% for enhancement, 23.6% for adaptation, 21.7% for repair, and

3.4% for other.

Activity % Effort

Enhancement

Improved Efficiency

Improved Documentation

User Enhancements

51.3

4.0

5.5

41.8

Adaptation

Input data, files

Hardware, Operating System

23.6

17.4

6.2

Corrections

Emergency Fixes

Scheduled Fixes

21.7

12.4

9.3

Others 3.4

Maintenance effort distribution

Lientz and Swanson determined that the maintenance programmer in a business data

processing installation maintains 32K source instructions. For real-time and aerospace

software, numbers in the range of 8K to 10K are more typical.

An estimate of the number of full-time software personnel needed for software maintenance

can be determined by dividing the estimated number of source instructions to be maintained

by a maintenance programmer. For example, if a maintenance programmer can maintain 32

KDSI, then two maintenance programmers are required to maintain 64 KDSI:

FSP = (64 KDSI)/(32 KDSI/FSP) = 2 FSPm

Boehm suggests that maintenance effort can be estimated by use of an activity ratio, which is

the number of source instructions to be added or modified in any given time period divided by

the total number of instructions:

ACT = (DSIadded + DSImodified)/DSItotal

The activity ratio is then multiplied by the number of programmer-months required for

development in a given time period to determine the number of programmer-months required

for maintenance in the corresponding time period:

PMm = ACT * MMdev

A further enhancement is provided by an effort adjustment factor EAF, which recognizes that

the effort multipliers for maintenance may be different from the effort multipliers used for

development:

PMm = ACT * EAF * MMdev

Heavy emphasis on reliability and the use of modern programming practices during

development may reduce the amount of effort required for maintenance, while low emphasis

on reliability and modern practices during development may increase the difficulty of

maintenance.

THE SOFTWARE REQUIREMENTS SPECIFICATION

The analysis phase of software development involves project planning and software

requirements definition. The outcome of planning is recorded in the System Definition, the

Project Plan, and the preliminary User’s Manual. The Software Requirements Specification

records the outcome of the software requirements definition activity.

The System Definition, Project Plan, and preliminary User’s Manual are concerned with the

user and external view of the software product. The Software Requirements Specification is a

technical specification of requirements for the software product. The goal of software

requirements definition is to completely and consistently specify the technical requirements

for the software product in a concise and unambiguous manner using formal notations.

The Software Requirements Specification is based on the System Definition. High-level

requirements specified during initial planning are elaborated. The requirements specification

will state the “what” of the software product without implying “how”. Software design is

concerned with specifying how the product will provide the required features.

The format of a requirements specification document is presented as follows:

Section 1: Product Overview and Summary

Section 2: Development, Operating and Maintenance Environments

Section 3: External Interfaces and Data Flow

Section 4: Functional Requirements

Section 5: Performance Requirements

Section 6: Exception Handling

Section 7: Early Subsets and Implementation Priorities

Section 8: Foreseeable Modifications and Enhancements

Section 9: Acceptance Criteria

Section 10: Design Hints and Guidelines

Section 11: Cross-Reference Index

Section 12: Glossary of Terms

Format of a software requirements specification

 Sections 1 and 2 present an overview of product features and summarizes the processing

environments for development, operation and maintenance of the product.

 Section 3 specifies the externally observable characteristics of the software product. It

includes user displays and report formats, a summary of user commands and report

options, data flow diagrams, and a data dictionary.

 Data flow diagrams specify data sources and data sinks, data stores, transformations to be

performed on the data, and the flow of data between sources, sinks, transformations, and

stores.

 A data store is a conceptual data structure, in the sense that physical implementation

details are suppressed; only the logical characteristics of data are emphasized on a data

flow diagram.

 Data flow diagram can be depicted informally or by using special notation, where data

sources and data sinks are depicted by shaded rectangles, transformations by ordinary

rectangles and data stores by open ended rectangles. The arcs specify data flow; they are

labeled with the names of data items whose characteristics are specified in the data

dictionary.

An informal data flow diagram

 Like flowcharts, data flow diagram can be used at any level of detail. They can be

hierarchically decomposed by specifying the inner workings of the functional nodes using

additional data flow diagrams. Unlike flowcharts, data flow diagrams are not concerned

with decision structure or algorithmic details.

A formal data flow diagram

NAME: Create

WHERE USED: SDLP

PURPOSE:
Create passes a user-created design entity to the SLP processor for verification of

syntax

PURPOSE:
Create passes a user-created design entity to the SLP processor for verification of

syntax

DERIVED

FROM:
User Interface Processor

SUBITEMS:

Name

Uses

Procedures

References

NOTES: Create contains one complete user-created design entity

A Data dictionary entry

 Entries in a data dictionary include the name of the data item, and attributes such as the

data flow diagrams where it is used, its purpose, where it is derived from, its subitems, and

any notes that may be appropriate.

 Section 4 specifies the functional requirements. It is expressed in relational and state-

oriented notations specifying relationships among inputs, actions, and outputs.

 Performance characteristics such as response time for various activities, processing time

for various processes, throughput, primary and secondary memory constraints, required

telecommunication bandwidth, and special items such as extraordinary security

constraints or unusual reliability requirements are specified in Section 5.

 Exception handling, including the actions to be taken and the messages to be displayed in

response to undesired situations or events, is described in Section 6.

 Section 7 specifies early subsets and implementation priorities for the system under

development.

 Foreseeable modifications and enhancements that may be incorporated into the product

following initial product release are specified in Section 8.

 The software product acceptance criteria are specified in Section 9. Acceptance criteria

specify functional and performance tests that must be performed, and the standards to be

applied to source code internal documentation, and external documents such as the

design specifications, the test plan, the user‟s manual, the principles of operation, and the

installation and maintenance procedures.

 Section 10 contains design hints and guidelines.

 Section 11 relates product requirements to the sources of information used in deriving the

requirements. A cross-reference directory should be provided to index specific paragraph

numbers in the Software Requirements Specification to specific paragraphs in the System

Definition and the preliminary User’s Manual, and to other sources of information such as

people or documents.

 Section 12 provides definitions of terms that may be unfamiliar to the customer and the

product developers.

Desirable Properties:

There are a number of desirable properties that a Software Requirements Specification should

possess:

1. Correct

2. Complete

3. Consistent

4. Unambiguous

5. Functional

6. Verifiable

7. Traceable

8. Easily changed

 An incorrect or incomplete set of requirements result in a software product that satisfies

its requirements but does not satisfy customer needs.

 An inconsistent specification states contradictory requirements in different parts of the

document, while an ambiguous requirement is subject to different interpretations by

different people.

 Software requirements should be functional in nature; i.e., they should describe what is

required without implying how the system will meet its requirements. This provides

maximum flexibility for the product designers.

 Requirements must be verifiable from two points of view; 1) Verify the requirements satisfy

the customer‟s needs, 2) Verify the subsequent work products satisfy the requirements.

 Finally, the requirements should be indexed, segmented, and cross-referenced to permit

easy use and easy modification.

 Every software requirement should be traceable to specific customer statements and to

specific statements in the System Definition.

 Changes will occur, and project success depends on the ability to incorporate change

without starting over. Cross-referencing can be accomplished by referring to the

appropriate paragraph numbers in the appropriate documents.

FORMAL SPECIFICATION TECHNIQUES

Specifying the functional characteristics of software product is one of the most important

activities to be accomplished during requirements analysis. Formal notations have the

advantage of being concise and unambiguous.

Both relational and state-oriented notations are used to specify the functional characteristics

of software. Relational notations are based on the concepts of entities and attributes. Entities

are named elements in a system. Attributes are specified by applying functions and relations

to the named entities. Attributes specify permitted operations on entities, relationships among

entities, and data flow between entities.

The state of a system is the information required to summarize the status of system entities at

any particular point in time; given the current state and the current stimuli, the next state can

be determined.

Relational notations include implicit equations, recurrence relations, algebraic axioms, and

regular expressions. State-oriented notations include decision tables, event tables, transition

tables, finite-state mechanisms, and Petri nets.

 Relational Notations

 Implicit Equations

Implicit equations state the properties of a solution without stating a solution method. For

example, matrix inversion as

M × M‟ = I ± E

Matrix inversion is specified as the matrix product of the original matrix M and the inverse of

M, M‟, yields the identity matrix I plus or minus the error matrix E, where E specifies allowable

computational errors.

Implicit specification of a square root function, SQRT, can be stated as

(0 <= X <= Y) [ABS(SQRT(X)**2 – X) < E]

States that for all (real?) values of X in the closed range 0 to Y, computing the square root of X,

squaring it, and subtracting X results in an error value in some range.

 Recurrence Relations

A recurrence relation consists of an initial part called the basis and one or more recursive

parts. For example, successive Fibonacci numbers are formed as the sum of the previous two

Fibonacci numbers, where the first one is defined as 0, and the second as 1. This can be

defined by the recurrence

FI(0) = 0

FI(1) = 1

FI(N) = FI(N – 1) + FI(N – 2) for all N > 1

 Algebraic Axioms

Mathematical systems are defined by axioms. The axioms specify fundamental properties of a

system and provide a basis for deriving additional properties that are implied by the axioms.

These additional properties are called theorems. In order to establish a valid mathematical

system, the set of axioms must be complete and consistent; ie., it must be possible to prove

desired results using the axioms, and it must not be possible to prove contradictory results.

A data type is characterized as a set of objects and a set of permissible operations on those

objects. The term “abstract data type” (or “data abstraction”) refers to the fact that permissible

operations on the data objects are emphasized, while representation details of the data objects

are suppressed.

Axiomatic specification of the last-in first-out (LIFO) property of stack objects is specified as

follows:

SYNTAX:

OPERATION DOMAIN RANGE

NEW () STACK

PUSH (STACK, ITEM) STACK

POP (STACK) STACK

TOP (STACK) ITEM

EMPTY (STACK) BOOLEAN

AXIOMS:

(stk is of type STACK, itm is of type ITEM)

1) EMPTY(NEW) = true

2) EMPTY(PUSH(stk, itm)) = false

3) POP(NEW) = error

4) TOP(NEW) = error

5) POP(PUSH(stk, itm)) = stk

6) TOP(PUSH(stk, itm)) = itm

Algebraic specification of the LIFO property

Intuitive definitions of the stack operations are:

 NEW creates a new stack

 PUSH adds a new item to the top of a stack

 TOP returns a copy of the top item

 POP removes the top item

 EMPTY tests for an empty stack

Operation NEW yields a newly created stack. PUSH requires two arguments, a stack and an

item; it produces a stack. POP requires a stack as its arguments and yields a stack. TOP

requires a stack and produces an item. EMPTY tests for an empty stack it requires a stack and

provides a Boolean value.

The axioms in the above figure can be stated in English as follows:

1. A new stack is empty.

2. A stack is not empty immediately after pushing an item onto it.

3. Attempting to pop a new stack results in an error.

4. There is no top item on a new stack.

5. Pushing an item onto a stack and immediately popping it off leaves the stack

unchanged.

6. Pushing an item onto a stack and immediately requesting the top item returns the item

just pushed onto the stack.

Thus the axioms specify the fundamental characteristics of stacks in a precise and

unambiguous manner. The intuitively defined entities NEW, PUSH, POP, TOP, and EMPTY are

precisely described using a state-oriented approach as follows:

NEW

Purpose: Create a new stack

Exception: Memory_Full = true

Effects: Valid_Stack(NEW) = true

Number_Items(NEW) = 0

EMPTY(stk)

Purpose: Test stk for empty property

Exception: „Valid_Stack(stk)‟ = false

Effects: if „Number_Items(stk)‟ = 0 then true else false

PUSH(stk,item)

Purpose: Place item on stack

Exception: „Valid_Stack(stk)‟ = false

 „Number_Items(stk)‟ = MAX

Effects: if „Number_Items(stk)‟ = MAX then error

else Number_Items(stk) = „Number_Items(stk)‟ + 1

POP(stk)

Purpose: Delete top item from stk

Exception: „Valid_Stack(stk)‟ = false

 “Number_Items(stk)‟ = 0

Effects: if „Number_Items(stk)‟ = 0 then error else {stk = „stk‟ – TOP(stk)

 Number_Items(stk) = „Number_Items(stk)‟ – 1}

TOP(stk)

Purpose: Return a copy of top item on stk

Exception: „Valid_Stack(stk)‟ = false

 „Number_Items(stk)‟ = 0

Effects: if „Number_Items(stk)‟ = 0 then error

 Else Number_Items(stk) = „Number_Items(stk)‟}

Definition of STACK function behavior

An entity delimited by quotes [eg: „Valid_Stack(stk)‟] denotes the state of the system

immediately before the operation in which it is contained. An unquoted entity refers to the

state of the system immediately following the containing operation. This technique combines

the advantages of the algebraic approach (precise specification of interactions among

operations) and the finite-state approach (precise specification of the behavior of the

individual operations).

The first-in first-out (FIFO) property of queues is specified as follows:

SYNTAX:

OPERATION DOMAIN RANGE

 NEW () QUEUE

 ADD (QUEUE,ITEM) QUEUE

 FRONT (QUEUE) ITEM

 REMOVE (QUEUE) QUEUE

 EMPTY (QUEUE) BOOLEAN

AXIOMS:

 (que is of type QUEUE, itm is of type ITEM)

1) EMPTY(NEW) = true

2) EMPTY(ADD(que,itm)) = false

3) FRONT(NEW) = error

4) REMOVE(NEW) = error

5) FRONT(ADD(que,itm)) = if EMPTY(que) then itm else FRONT(que)

6) REMOVE(ADD(que,itm)) = if EMPTY(que) then NEW else ADD(REMOVE(que),itm)

Algebraic specification of the FIFO property

NEW creates a new queue, ADD adds an item to the rear of a queue, FRONT returns a copy of the

front item in a queue without deleting it, REMOVE deletes the front item, and EMPTY tests for an

empty queue.

Regular Expressions

Regular expressions can be used to specify the syntactic structure of symbol strings. Because many

software products involve processing of symbol strings, regular expressions provide a powerful and

widely used notation in software engineering. Every set of symbol strings specified by a regular

expression defines a formal language. Regular expressions can thus be viewed as language

generators.

The Rules for forming regular expressions are quite simple:

1) Atoms: The basic symbols in the alphabet of interest form regular expressions.

2) Alternation: If R1 and R2 are regular expressions, then (R1 | R2) is a regular expression.

3) Composition: If R1 and R2 are regular expressions, then (R1 R2) is a regular expression.

4) Closure: If R1 is a regular expression, then (R1)* is a regular expression.

5) Completeness: Nothing else is a regular expression.

An alphabet of basic symbols provides the atoms. The alphabet is made up of whatever symbols are

of interest in the particular application. Alternation, (R1 | R2), denotes the union of the languages (sets

of symbol strings) specified by R1 and R2, and composition, (R1 R2), denotes the language formed

by concatenating strings from R2 onto strings from R1. Closure, (R1)*, denotes the language formed

by concatenating zero or more strings from R1 with zero or more strings from R1.

Observe that rules 2, 3, and 4 are recursive; ie., they define regular expressions in terms of regular

expressions. Rule 1 is the basis rule, and rule 5 completes the definition of regular expressions.

Examples of regular expressions follow:

1) Given atoms a and b, then a denotes the set { a } and b denotes the set { b }.

2) Given atoms a and b, then (a | b) denotes the set { a, b }.

3) Given atoms a, b, and c, then ((a | b) | c) denotes the set { {a,b}, c}.

4) Given atoms a and b, then (a b) denotes the set { ab } containing one element ab.

5) Given atoms a, b, and c, then ((a b) c) denotes the set { abc } containing one element abc.

6) Given atom a, then (a)* denotes the set {e, a, aa, aaa, …}, where e denotes the empty string.

Complex regular expressions can be formed by repeated application of recursion rules 2, 3, and 4:

1) (a (b | c)) denotes {ab, ac}.

2) (a | b)* denotes {e, a, b, aa, bb, ab, ba, aab, …}

3) ((a (b | c)))* denotes (e, ab, ac, abab, acac, abac, acab, ababac, …}

Closure, (R1)*, denotes zero or more concatenations of elements from R1. A commonly used notation

is (R1)+, which denotes one or more concatenations of elements in R1. The “*” and “+” notations are

called the Kleene star and Kleene plus notations.

State-Oriented Notations

 Decision Tables

Decision tables provide a mechanism for recording complex decision logic. Decision tables are widely

used in data processing applications and have an extensively developed literature.

 Decision rules

Rule 1 Rule 2 Rule 3 Rule 4

(Condition stub) (Condition entries)

(Action stub) (Action entries)

Basic elements of a decision table

A decision table is segmented into four quadrants: condition stub, condition entry, action stub, and

action entry. The condition stub contains all of the conditions being examined. Condition entries are

used to combine conditions into decision rules. The action stub describes the actions to be taken in

response to decision rules, and the action entry quadrant relates decision rules to actions.

In a limited-entry decision table, Y denotes “yes” , N denotes “no”, - denotes “don’t care”, and X

denotes “perform action”.

 1 2 3 4

Credit limit is satisfactory Y N N N

Pay experience is favorable - Y N N

Special clearance is obtained - - Y N

Perform approve order X X X

Go to reject order X

Limited entry decision table

Orders are approved if the credit limit is not exceeded, or if the credit limit is exceeded but past

experience is good, or if a special arrangement has been made. If none of these conditions hold, the

order is rejected.

If more than one decision rule has identical (Y,N,-) entries, the table is said to be ambiguous.

Ambiguous pairs of decision rules that specify identical actions are said to be redundant, and those

specifying different actions are contradictory. Contradictory rules permit specification of

nondeterministic and concurrent actions. There are 2**N combinations of conditions in a table that

has N condition entries.

 Decision rule

 Rule 1 Rule 2 Rule 3 Rule 4

C1 Y Y Y Y

C2 Y N N N

C3 N N N N

A1 X

A2 X

A3 X X

An ambiguous decision table

C1 Y N

C2 Y N

C3 Y

A1 X

A2 X

A3 X

An incomplete and over-specified decision table

Event Tables

Event tables specify actions to be taken when events occur under different set of conditions. A two-

dimensional event table relates actions to two variables; f(M, E) = A, where M denotes the current set

of operating conditions, E is the event of interest, and A is the action to be taken. Tables of higher

dimension can be used to incorporate more independent variables.

An event table consists of the actions to be taken are related to the current mode of operation and the

events that may occur within modes. Thus, if the system is in start-up mode SU and event E13

occurs, action A16 is to be taken; f(SU, E13) = A16. Special notations can be invented to suit

particular situations.

For example, actions separated by semicolons (A14; A32) might denote A14 followed sequentially by

A32, while actions separated by commas (A6, A2) might denote concurrent activation of A6 and A2.

Similarly, a dash (-) might indicate no action required, while an X might indicate an impossible system

configuration (eg., E13 cannot occur in steady-state mode).

Mode Event

E13 E37 E45 … …

Start-up A16 - A14; A32

Steady X A6, A2 -

Shut-down … … …

Alarm … … …

A two-dimensional event table

Transition Tables

Transition tables are used to specify changes in the state of a system as a function of driving forces.

The state of a system summarizes the status of all entities in the system at a particular time. Given

the current state and the current conditions, the next state results; if, when in state Si, condition Cj

results in a transition to state Sk, we say f(Sj, Cj) = Sk.

Current State Current Input

a b

S0 S0 S1

S1 S1 S0

A simple transition table

Given the current state S1 and current input b, the system will go to state S0; ie., f(S1, b) = S0. A

transition table that is augmented to indicate actions to be performed and outputs to be generated in

the transition to the next state.

Present state Input Action Output Next State

S0 a

b

 S0

S1

S1 a

b

 S0

S1

An augmented transition table

Transition diagrams are alternative representations for transition tables. In a transition diagram, states

become nodes in a directed graph and transitions are represented as arcs between nodes. Arcs are

labeled with conditions that cause transitions.

Transition diagrams and transition tables are representations for finite state automata. The theory of

finite state automata is rich, complex, and highly developed.

Transition diagram

Decision tables, event tables, and transition tables are notations for specifying actions as functions of

the conditions that initiate those actions. Decision tables specify actions in terms of complex decision

logic, event tables relate actions to system conditions, and transition tables incorporate the concept of

system state.

Finite State Mechanisms

Data flow diagrams, regular expressions, and transition tables can be combined to provide a powerful

finite state mechanism for functional specification of software systems. The following figure depicts

the data flow diagram for a software system consisting of a set of processes interconnected by data

streams. Each of the data streams can be specified using a regular expression and each of the

processes can be described using a transition table.

A network of data streams and processes

Regular expressions have been quite simple; one can describe highly complex data streams using

regular expressions. For example, a data stream might be specified as

(X(((X Y))* | Z) | ((((X | Y) Z)) + Y))

Specification of the “Split” process

The following figure specifies a system for which the incoming data stream consists of a start marker

Ds, followed by zero or more D11 messages, followed by zero or more D12 messages, followed by an

end-of-data marker De. The purpose of process “split” is to route D11 messages to file F6 and D12

messages to file F7. The transition table in the above figure specifies the action of “split”. Process split

starts in initial state S0 and waits for input Ds.

Any other input in state S0 is ignored (alternatively, other inputs could result in error processing).

Arrival of input Ds in state S0 triggers the opening of files F6 and F7 and transition to state S1. In S1,

D11 messages are written to F6 until either a D12 message or a De message is received (note that a

Ds De data stream with no D11 messages and no D12 message is possible). On receipt of a D12

message, process split closes Fchnique6, writes the message D12 to F7 and goes to state S2.

In state S2, split writes zero or more D12 messages to F7, then, on receipt of the end-of-data marker,

De, closes F7 and returns to state S0 to await the next transmission.

One drawback of fine-state mechanisms is the so-called state explosion phenomenon. Complex

systems may have large numbers of states and many combinations of input data. Specifying the

behavior of a software system for all combinations of current state and current input can become

unwieldy.

Hierarchical decomposition is one technique for controlling the complexity of a finite-state

specification. Using hierarchical decomposition, higher level concepts are given names, the meaning

and validity of which are established at a lower level.

Petri Nets

Petri nets were invented in the 1960s by Carl Petri at the University of Bonn, West Germany. Petri

nets have been used to model a wide variety of situations; they provide a graphical representation

technique, and systematic methods have been developed for synthesizing and analyzing Petri nets.

Petri nets were invented to overcome the limitations of finite state mechanisms in specifying

parallelism.

Concurrent Systems are designed to permit simultaneous execution of the software components,

called tasks or processes, on multiple processors. Alternatively, execution of tasks can be interleaved

on a single processor. Concurrent tasks must be synchronized to permit communication among tasks

that operate at differing execution rates, to prevent simultaneous updating of shared data, and to

prevent deadlock. Deadlock occurs when all tasks in the system are waiting for data or other

resources that can only be supplied by tasks that are waiting on other tasks. The fundamental

problem of concurrency are thus synchronization, mutual exclusion, and deadlock.

A Petri net is represented as a bipartite directed graph. The two types of nodes in a Petri net are

called places and transitions. Places are marked by tokens; a Perti net is characterized by an initial

marking of places and a firing rule. A firing rule has two aspects; a transition is enabled if every input

places has at least one token. An enabled transition can fire; When a transition fires; each input

places of that transition loses one token, and each output places of that transition gains one token. A

marked Petri net is formally defined as a quadruple, consisting of a set of places P, a set of

transitions T, a set of arcs A, and a marking M. C = (P,T,A,M), where

p = {p1, p2, . . . Pm}

T = {t1, t2, . . . tn }

A ⊂ {P x T} U {T x P} = {(pi , tj) . . . (tk, pl) . . . }

M: P I; ie., M(p1, p2, . . . pm) = (i1, i2, . . . im)

Marking M associates an integer number of token ik with each places pk. When a transition fires, the

marking of places p changes from M(p) to M’(p) as follows:

M’(p) = M(p) + 1 if p ∈ O(t) and p ∉ I(t)

M’(p) = M(p) - 1 if p ∉ I(t) & p ∈ O(t)

M’(p) = M(p) otherwise

where I(t) is the set of input places of transition t and O(t) is the set of output places of transition t.

A transition t is enabled if M(p) > 0 for all p ∈ I(t).

Petri net model of concurrent processes t1, t2, t3 (initial marking)

In the above figure, the Petri net models the indicated computation; each transition in the net

corresponds to a task activation and places are used to synchronize processing. Completion of t0

removes the initial token from p0 and places a token on p1, which enables the co-begin. Firing of the

co-begin removes the token from p1 and places a token on each of p2, p3, and p4.

This enables t1, t2, and t3; they can fire simultaneously or in any order. This corresponds to

concurrent execution of tasks t1, t2, and t3. When each of tasks t1, t2, and t3 completes its

processing, a token is placed on the corresponding output place, p5, p6, or p7. Co-end is not enabled

until all three tasks complete their processing. Firing of co-end removes the tokens from p5, p6, and

p7 and places a token on p8, thus enabling t4 which can then fire.

A deadlocked Petri net

The above figure illustrates a deadlock situation. Both t1 and t2 are waiting for the other to fire and

neither can proceed.

A conflict situation

Conflict in Petri nets provides the basis for modeling of mutual exclusion. Conflict is illustrated in

above figure; both t1 and t2 are enabled, but only one can fire. Firing one will disable the other.

As an example of mutual exclusion, a Petri net of the producer/consumer problem is illustrated as:

Initial marking for the producer/consumer Petri Net

Semaphore solution to the producer/consumer problem

LANGUAGES AND PROCESSORS FOR REQUIREMENTS SPECIFICATION

A number of special-purpose languages and processors permit concise statement and automated

analysis of requirements specification for software. Some are graphical in nature, while others are

textual. Some are manually applied, and others have automated processors.

PSL/PSA

The Problem Statement Language (PSL) was developed by Professor Daniel Teichrow at the

University of Michigan. The Problem Statement Analyzer (PSA) is the PSL processor. PSL and PSA

were developed as components of ISDOS and so this system is sometimes referred to as the ISDOS

system. PSL is based on a general model of systems. This model describes a system as a set of

objects, where each object may have properties, and each property may have property values.

Objects may be interconnected; the connections are called relationships.

The objective of PSL is to permit the information appears in a Software Requirements Specification.

In PSL, system descriptions can be divided into eight major aspects:

1. System input/output flow

2. System structure

3. Data structure

4. Data derivation

5. System size and volume

6. System dynamics

7. System properties

8. Project management

The system input/output flow aspect deals with the interaction between a system and its environment.

System structure is concerned with the hierarchies among objects in a system. The data structure

aspect includes all the relationships that exist among data. The data derivation specifies which data

objects are involved in particular processes in the system. Data derivation describes data

relationships that are internal to a system.

The system size and volume aspect is concerned with the size of the system and those factors that

influence the volume of processing required. The system dynamics presents the manner in which the

system “behaves” over time. The project management aspect requires that project-related

information, as well as product-related information. This involves identification of the people involved,

their responsibilities, schedules, cost estimates, etc.

PSA is an automated analyzer for processing requirements stated in PSL. PSA operates on a

database of information collected from a PSL description. The PSA system can provide reports in four

categories: database modification reports, reference reports, summary reports, and analysis reports.

Database Modification Report list changes that have been made since the last report, together with

diagnostic and warning messages for error correction and recovery.

Reference Reports include the Name List Report, which lists all the objects in the database with types

and dates of last change. The Formatted Problem Statement Report shows properties and

relationships for object. The Dictionary Report provides a data dictionary.

Summary Reports present information collected from several relationships. The Data Base Summary

Report provides project management information by listing the total number of objects. The Structure

Report shows complete and partial hierarchies, and the External Picture Report depicts data flows in

graphical form.

Analysis Reports include the Contents Comparison Report, which compares the similarity of inputs

and outputs. The Data Processing Interaction Report can be used to detect gaps in information flow

and unused data objects. The Processing Chain Report shows the dynamic behavior of the system.

Structure of the Problem Statement Analyzer

Example of a PSL Formatted Problem Statement

Advantages:

• PSL/PSA is a useful tool for documenting & communicating software requirements.

• PSL/PSA not only supports requirements analysis, but also supports design.

• PSL/PSA has been used from commercial data processing applications to air defense

systems.

 RSL/REVS (Requirements Statement Language/Requirements Engineering Validation System)

The Requirements Statement Language (RSL) was developed by TRW Defense and Space Systems

Group to permit concise, unambiguous specification of requirements for real-time software systems.

Requirements Engineering Validation System (REVS) processes and analyzes RSL statements; both

RSL/REVS are components of Software Requirements Engineering Methodology (SREM).

Many of the concepts in RSL are based on PSL. RSL has four primitive concepts: Elements which

name objects; Attributes which describe the characteristics of elements; Relationships which describe

binary relationship between elements; and Structures, which are composed of nodes and processing

steps.

The fundamental characteristic of RSL is the flow-oriented approach used to describe real-time

systems. RSL models the Stimulus-Response nature of process control systems. Flow approach

provides direct testability of requirements. Flows are specified by Requirements Networks (R-NETS).

R-NETS have both graphical & textual representations. AND node (&) specify parallel operations. OR

node (+) have an Otherwise path. RSL includes predefined element types, relationships, attributes

and structures.

Graphical Representation of an R-NET

Textual Representation of an R-NET

Predefined elements include Alpha, Data, & R_NET. Alpha specifies functional characteristics of

processing step in R-NET. Alphas are described by Inputs, Outputs, & Descriptions. Data specifies

data elements at conceptual level: Input_To & Output_From. Attributes – Initial Value & Includes.

Elements – Description.

The three major components of REVS: A translator for RSL, A centralized data base, the Abstract

System Semantic Model (ASSM), A set of automated tools for processing information in ASSM

Examples of ALPHA, DATA, and ORIGINATING_REQUIREMENT

Examples of the DEFINE attribute from RSL

Structure of the REVS Processor

ASSM is a relational database. ASSM include an interactive graphics package to specify flow paths.

Static checkers to check completeness and consistency of the information used throughout the

system. An automated simulation package that generates & executes simulation models of the

system. REVS is a large, complex software tool. REVS is cost-effective only for large, complex real-

time systems.

SADT (Structured Analysis and Design Technique)

SADT was developed by D.T.Ross and colleagues @ Softech, Inc. SADT incorporates a graphical

language & a set of methods & management guidelines for using the language called the Language

of Structured Analysis (SA).

SA language are similar to engineering blueprint systems used in civil & mechanical engineering.

SADT model consists of an ordered set of SA diagrams. Each diagram is drawn on a single page, &

must contain 3-6 nodes plus interconnecting arcs. Two basic types of SA diagrams: Activity diagram

(Actigram) and Data diagram (Datagram).

Actigram: nodes denote activities & arcs specify data flow. Actigram is the SA version of Data Flow

Diagrams (DFD). Datagrams specify data objects in the nodes and activities on the arcs. Activity

diagrams are used more frequently than data diagrams. Data diagrams are important for two reasons:

1. To indicate all activities affected by a given data object

2. To check the completeness and consistency of an SADT model

Activity Diagram Components

Data Diagram Components

An expanded view of Activity A1

An Activity Diagram Depicting the Requirements Analysis Activity

Cover Sheet for an SADT Model

Provides notations and set of techniques for understanding and recording complex requirements in

clear and concise manner. Top-down methodology in decomposing high-level nodes into subordinate

diagrams

 SSA (Structured System Analysis)

Two similar versions of SSA described by Gane and Sarson and by DeMarco. DeMarco version is

similar to Gane and Sarson version, but it does not incorporate database concept. SSA is used in

traditional data processing environments.

SSA Uses a graphical language to build models of systems. Unlike SADT, it uses database concepts.

SSA does not provide many structural mechanisms available in SADT. Four basic features in SSA:

1. Data flow diagrams

2. Data dictionaries

3. Procedure logic representations

4. Data store structuring techniques

SSA data flow diagrams are similar to SADT actigrams. Open-ended rectangles indicate data stores.

Labels on the arcs denote data items. Shaded rectangles depict sources and sinks. Rectangles

indicate processing steps. Data dictionary is used to define and record data elements. Processing

logic representations viz. decision tables & structured English – used to specify algorithmic

processing details. Process logic representations precisely specify processing sequences that are

understandable to customers and developers.

A Data Flow Diagram

Data Dictionary Entries in SSA

An SSA Processing Logic Representation

SSA can be refined to level of detailed design before the DFD & Data dictionary are completed.

Important feature of SSA is use of a relational model to specify data flows and data stores. Relations

are composed from fields of data records. Fields are called domains of the relation. If a record has N

fields, the relation is called an N-tuple.

GIST

Gist is a formal specification language developed at the USC/Information Sciences Institute by

R.Balzar & Colleagues. Gist is a textual language based on a relational model of objects and

attributes.

A Gist specification is a formal description of valid behaviors of a system. Specification is composed

of 3 parts:

1. Object types and & relationships between them (determines set of possible states).

2. Actions and demons (define transitions between possible states).

3. Constraints on states and state transitions.

Steps in preparing Gist specification:

1. Identify a collection of object types manipulated by process, described by concrete nouns.

2. Identify individual objects within types. This is not a variables, used to describe constraints or

dynamic aspects of a process.

3. Identify relationships in which objects can be related to one another (include “connects to”, “is

part of” & “derived from”).

4. Identify types & relationships.

5. Identify static constraints on types & relationships. Static constraints identify processing states

that never arise.

6. Identity actions that can change state of the process.

7. Identify dynamic constraints.

8. Identify active participants in the process and group them into classes.

A Gist Specification

Initial Operating Capability (IOC) is a prototype testing facility for software specifications. Purpose of

IOC is to validate functional specifications by “executing” them on real test data. IOC consists of

evaluator capable of executing specifications expressed in a subset of Gist, & programs that permit

entering, editing, & displaying of Gist specifications. IOC permits state initialization, displaying of

states, and interactive breakpointing and tracing of test case evaluation. Gist has well-defined, but

rather complex syntax.

Conclusion:

• SADT & SSA do not have automated processors

PSL/PSA Originally developed for data processing applications. Widely used in other

applications.

RSL/REVS Real-time process control systems.

SADT Interconnection structure of any large, complex system. Not restricted to software

systems.

SSA Gane and Sarson version used in data processing applications that have database

requirements. DeMarco version suited to data flow analysis of software systems.

GIST Object-oriented specification and design. Refinement of specifications into source

code.

