
MODULE 1

INTRODUCTION TO SOFTWARE ENGINEERING

Software Engineering is a new technological discipline, but based on the foundations of computer

science, management science, economics, communication skills, and the engineering approach to

problem solving.

Software Engineering activities occur within an organizational context, and a high degree of

communication is required among customers, managers, software engineers, hardware engineers,

and other technologists. Good oral, written, and interpersonal communication skills are crucial for

software engineer.

A fundamental principle of software engineering is to design software products that minimize the

intellectual distance between problem and solution.

Software is intangible; it has no mass, no volume, no color, no odor – no physical properties.

In order to develop a software product, user needs and constraints must be determined and explicitly

stated; the product must be designed to accommodate implementers, users, and maintainers; the

source code must be carefully implemented and thoroughly tested; and supporting documents such

as principles of operation, the user‘s manual, installation instructions, training aids, and maintenance

documents must be prepared. Software maintenance tasks include analysis of change requests,

redesign and modification of the source code, thorough testing of the modified code, updating of

documents and documentation to reflect the changes, and distribution of the modified work products

to appropriate user sites.

The primary goals of software engineering are to improve the quality of software products and to

increase the productivity and job satisfaction of software engineers.

THE EVOLVING ROLE OF SOFTWARE

Software takes on a dual role. It is a product and, the vehicle for delivering a product. As a product,

it delivers the computing potential embodied by computer hardware or, a network of computers that

are accessible by local hardware. Whether it resides within a cellular phone or operates inside a

mainframe computer, software is information transformer— producing, managing, acquiring,

modifying, displaying, or transmitting information that can be as simple as a single bit or as complex

as a multimedia presentation.

As the vehicle used to deliver the product, software acts as the basis for the control of the computer

(operating systems), the communication of information (networks), and the creation and control of

other programs (software tools and environments).

Software delivers the most important product of our time—information. Software transforms personal

data; it manages business information to enhance competitiveness; it provides a gateway to

worldwide information networks (e.g., Internet) and provides the means for acquiring information in all

of its forms.

The role of computer software has undergone significant change over more than 50 years. Dramatic

improvements in hardware performance, profound changes in computing architectures, vast

increases in memory and storage capacity, and a wide variety of input and output options have all

precipitated more sophisticated and complex computer-based systems. Today a huge software

industry has become a dominant factor in the economies of the industrialized world.

DEFINING SOFTWARE ENGINEERING

Software Engineering is defined as systematic, disciplined and quantifiable approach for the
development, operation and maintenance of software.

Software Engineering is the establishment and use of sound engineering principles in order to obtain
economically software that is reliable and works efficiently on real machines.

According to Boehm, Software Engineering involves ―the practical application of scientific knowledge
to the design and construction of computer programs and the associated documentation required to
develop, operate, and maintain them‖.

The IEEE Standard Glossary of Software Engineering terminology defines software engineering as:
―The systematic approach to the development, operation, maintenance, and retirement of software‖.

Software Engineering is the technological and managerial discipline concerned with systematic
production and maintenance of software products that are developed and modified on time and with
cost estimates.

 CHANGING NATURE OF SOFTWARE

 System Software

System software is a collection of programs which are written to service other programs. Some

system software processes complex but determinate, information structures. Other system application

process largely indeterminate data. Sometimes when, the system software area is characterized by

the heavy interaction with computer hardware that requires scheduling, resource sharing, and

sophisticated process management.

 Application Software

Application software is defined as programs that solve a specific business need. Application in this

area process business or technical data in a way that facilitates business operation or management

technical decision making. In addition to convention data processing application, application software

is used to control business function in real time.

 Engineering and Scientific Software

This software is used to facilitate the engineering function and task. However modern application

within the engineering and scientific area are moving away from the conventional numerical

algorithms. Computer-aided design, system simulation, and other interactive applications have begun

to take real-time and even system software characteristic.

 Embedded Software

Embedded software resides within the system or product and is used to implement and control

feature and function for the end-user and for the system itself. Embedded software can perform the

limited and esoteric function or provided significant function and control capability.

 Product-line Software

Designed to provide a specific capability for use by many different customers, product line software

can focus on the limited and esoteric marketplace or address the mass consumer market.

 Web Application

It is a client-server computer program which the client runs on the web browser. In their simplest form,

Web apps can be little more than a set of linked hypertext files that present information using text and

limited graphics. However, as e-commerce and B2B application grow in importance. Web apps are

evolving into a sophisticate computing environment that not only provides a standalone feature,

computing function, and content to the end user.

 Artificial Intelligence Software

Artificial intelligence software makes use of a non-numerical algorithm to solve a complex problem

that is not amenable to computation or straightforward analysis. Application within this area includes

robotics, expert system, pattern recognition, artificial neural network, theorem proving and game

playing.

 SOFTWARE MYTHS

Many causes of a software affliction can be traced to a mythology that arose during the early history

of software development.

 Management myths

Managers with software responsibility, are often under pressure to maintain budgets, keep schedules

from slipping, and improve quality. Like a drowning person who grasps at a straw, a software

manager often grasps at belief in a software myth, if that belief will lessen the pressure.

Myth: We already have a book that's full of standards and procedures for building software; won't that

provide my people with everything they need to know?

Reality: The book of standards may very well exist, but is it used? Are software practitioners aware of

its existence? Does it reflect modern software engineering practice? Is it complete? Is it streamlined

to improve time to delivery while still maintaining a focus on quality? In many cases, the answer to all

of these questions is "no."

Myth: My people have state-of-the-art software development tools, after all, we buy them the newest

computers.

Reality: It takes much more than the latest model mainframe, workstation, or PC to do high-quality

software development. Computer-aided software engineering (CASE) tools are more important than

hardware for achieving good quality and productivity, yet the majority of software developers still do

not use them effectively.

Myth: If we get behind schedule, we can add more programmers and catch up.

Reality: Software development is not a mechanistic process like manufacturing. In the words of

Brooks: "adding people to a late software project makes it later." At first, this statement may seem

counterintuitive. However, as new people are added, people who were working must spend time

educating the newcomers, thereby reducing the amount of time spent on productive development

effort. People can be added but only in a planned and well-coordinated manner.

Myth: If I decide to outsource the software project to a third party, I can just relax and let that firm

build it.

Reality: If an organization does not understand how to manage and control software projects

internally, it will invariably struggle when it outsources software projects.

 Customer myths

A customer who requests computer software may be a person at the next desk, a technical group

down the hall, the marketing/sales department, or an outside company that has requested software

under contract.

In many cases, the customer believes myths about software because software managers and

practitioners do little to correct misinformation. Myths lead to false expectations (by the customer) and

ultimately, dissatisfaction with the developer.

Myth: A general statement of objectives is sufficient to begin writing programs—we can fill in the

details later.

Reality: A poor up-front definition is the major cause of failed software efforts. A formal and detailed

description of the information domain, function, behaviour, performance, interfaces, design

constraints, and validation criteria is essential. These characteristics can be determined only after

thorough communication between customer and developer.

Myth: Project requirements continually change, but change can be easily accommodated because

software is flexible.

Reality: It is true that software requirements change, but the impact of change varies with the time at

which it is introduced. If serious attention is given to up-front definition, early requests for change can

be accommodated easily. The customer can review requirements and recommend modifications with

relatively little impact on cost. When changes are requested during software design, the cost impact

grows rapidly. Resources have been committed and a design framework has been established.

Change can cause upheaval that requires additional resources and major design modification, that is,

additional cost. Changes in function, performance, interface, or other characteristics during

implementation (code and test) have a severe impact on cost. Change, when requested after software

is in production, can be over an order of magnitude more expensive than the same change requested

earlier.

 Practitioner's myths

Myths that are still believed by software practitioners have been fostered by 50 years of programming

culture. During the early days of software, programming was viewed as an art form. Old ways and

attitudes die hard.

Myth: Once we write the program and get it to work, our job is done.

Reality: Someone once said that "the sooner you begin 'writing code', the longer it'll take you to get

done." Industry data indicate that between 60 and 80 percent of all effort expended on software will be

expended after it is delivered to the customer for the first time.

Myth: Until I get the program "running" I have no way of assessing its quality.

Reality: One of the most effective software quality assurance mechanisms can be applied from the

inception of a project—the formal technical review. Software reviews are a "quality filter" that have

been found to be more effective than testing for finding certain classes of software defects.

Myth: The only deliverable work product for a successful project is the working program.

Reality: A working program is only one part of a software configuration that includes many elements.

Documentation provides a foundation for successful engineering and, more important, guidance for

software support.

Myth: Software engineering will make us create voluminous and unnecessary documentation and will

invariably slow us down.

Reality: Software engineering is not about creating documents. It is about creating quality. Better

quality leads to reduced rework. And reduced rework results in faster delivery times.

Many software professionals recognize the fallacy of the myths just described. Regrettably, habitual

attitudes and methods foster poor management and technical practices, even when reality dictates a

better approach. Recognition of software realities is the first step toward formulation of practical

solutions for software engineering.

TERMINOLOGIES

Software engineering differs from traditional computer programming in that engineering-like

techniques are used to specify, design, implement, validate, and maintain software products within

the time and budget constraints established for the project. In addition, software engineering is

concerned with managerial issues.

Programmer is used to denote an individual who is concerned with the details of implementing,

packaging, and modifying algorithms and data structures written in particular programming languages.

Software engineers are additionally concerned with issues of analysis, design, verification and

testing, documentation, software maintenance, and project management. The terms ―developer‖ and

―software engineer‖ are used interchangeably.

Computer software is synonymous with ―computer program‖ or ―source code‖ or ―software product‖.

Software is not just the programs but also all associated documentation and configuration data which

is needed to make these programs operate correctly. A software system usually consists of a number

of separate programs, configuration files which are used to set up these programs, system

documentation which describes the structure of the system and user documentation which explains

how to use the system and, for software products, web sites for users to download recent product

information.

Documentation explains the characteristics of a document. Internal documentation of source code

describes the characteristics of the code, and external documentation explains the characteristics of

the documents associated with the code.

The term ―Customer‖ is used to denote an individual or organization that initiates procurement or

modification of a software product.

Fundamental quality attributes:

1. Usefulness: The most important quality attribute ie., the software product must satisfy user

needs. Careful planning, analysis, and customer involvement are required to develop useful

software products.

2. Reliability: The ability of a program to perform a required function under stated conditions for

a stated period of time.

3. Clarity: Software products must be clearly written and easy to understand.

4. Efficiency: Software product should be efficient. It is a fundamental quality attribute.

 ROLE OF SOFTWARE DEVELOPMENT

The Software Development Life Cycle (SDLC) consists of the following phases: Analysis, Design,

Implementation, System Testing, and Maintenance.

 Analysis

Analysis consists of two sub phases: Planning and Requirements Definition.

Planning include understanding the customer‘s problem, performing a feasibility study, developing a

recommended solution strategy, determining the acceptance criteria, and planning the development

process. The products of planning are a System Definition and a Project Plan.

The System Definition is typically expressed in English or natural language, and may incorporate

charts, figures, graphs, tables, and equations.

The Project Plan contains the life-cycle model to be used, the organizational structure for the project,

the preliminary development schedule, preliminary cost and resource esti8mates, preliminary staffing

requirements, tools and techniques to be used, and standard practices to be followed.

Requirements Definition is concerned with identifying the basic functions of software component in

a hardware / software / people system. The product of requirements definition is a specification that

describes the processing environment, the required software functions, performance constraints on

the software (size, speed, machine configuration), exception handling, subsets and implementation

priorities, probable changes and likely modifications, and the acceptance criteria for the software.

 Design

Design is concerned with identifying software components (functions, data streams, and data stores),

specifying relationships among components, specifying software structure, maintaining a record of

design decisions, and providing a blueprint for the implementation phase. Detailed design consists of

Architectural Design and Detailed Design.

Architectural design involves identifying the software components, decoupling and decomposing them

into processing modules and conceptual data structures, and specifying the interconnections among

components.

Detailed design is concerned with the details of ―how to‖. It involves adaptation of existing code,

modification of standard algorithms, invention of new algorithms, design of data representations, and

packaging of the software product.

Implementation

It involves translation of design specifications into source code, and debugging, documentation, and

unit testing of the source code. Modern programming languages provide many features to enhance

the quality of source code. These include structured control constructs, built-in and user-defined data

types, secure type checking, flexible scope rules, exception handling mechanisms, concurrency

constructs, and separate compilation of modules.

 System Testing

It involves two kinds of activities: Integration Testing and Acceptance Testing. Developing a strategy

for integrating the components of a software system into a functioning whole requires careful

planning so that modules are available for integration when needed. Acceptance testing involves

planning and execution of various types of tests in order to demonstrate that the implemented

software system satisfies the requirements stated in the requirements document.

 Maintenance

Following acceptance by the customer, the software system is released for production work and

enters the maintenance phase of the phased life-cycle model. Maintenance activities include

enhancement of capabilities, adaptation of the software to new processing environments, and

correction of software bugs.

 SOFTWARE LIFE CYCLE MODELS

Planning the software development process is important. The software life cycle encompasses all

activities required to define, develop, test, deliver, operate, and maintain a software product.

 BUILD & FIX MODEL

In the build and fix model (also referred to as an ad hoc model), the software is developed without

any specification or design. An initial product is built, which is then repeatedly modified until it satisfies

the user. That is, the software is developed and delivered to the user. The user checks whether the

desired functions ‗are present. If not, then the software is changed according to the needs by adding,

modifying or deleting functions. This process goes on until the user feels that the software can be

used productively. However, the lack of design requirements and repeated modifications result in loss

of acceptability of software. Thus, software engineers are strongly discouraged from using this

development approach.

This model includes the following two phases:

1. Build: In this phase, the software code is developed and passed on to the next phase.

2. Fix: In this phase, the code developed in the build phase is made error free. Also, in addition to

the corrections to the code, the code is modified according to the user‘s requirements.

Advantages

1. Requires less experience to execute or manage other than the ability to program.

2. Suitable for smaller software.

3. Requires less project planning.

Disadvantages

1. No real means is available of assessing the progress, quality, and risks.

2. Cost of using this process model is high as it requires rework until user‘s requirements are

accomplished.

3. Informal design of the software as it involves unplanned procedure.

4. Maintenance of these models is problematic.

WATERFALL MODEL

Waterfall model is the simplest model of software development paradigm. It says the all the phases of

Software Development Life Cycle (SDLC) will function one after another in linear manner. That is,

when the first phase is finished then only the second phase will start and so on. This model is also

called Phased Life Cycle Model or Waterfall Chart or Linear Sequential Model or Classical Life Cycle

Model.

The waterfall model suggests a systematic, sequential approach to software development that begins

with customer specification of requirements and progresses through design, implementation, testing

and maintenance.

Drawbacks

- Real projects rarely follow the sequential flow

- Accommodates iteration indirectly

- Changes can cause confusion

- It is often difficult for the customer to state all requirements explicitly

- Has difficulty accommodating the natural uncertainty that exists at the beginning of many

projects

- The customer must have patience

- A working version of the program(s) will not be available until late in the project time-span

- A major blunder, if undetected until the working program is reviewed, can be disastrous

- Leads to ―blocking states

INCREMENTAL PROCESS MODELS

- The incremental model combines elements of the waterfall model applied in an iterative

fashion.

- The model applies linear sequences in a staggered fashion as calendar time progresses.

- 1st increment is often a core product

- The plan addresses the modification of the core product to better meet the needs of the

customer and the delivery of additional features and functionality.

- For example, word-processing software developed using the incremental paradigm might

deliver basic file management, editing, and document production functions in the first

increment; more sophisticated editing and document production capabilities in the second

increment; spelling and grammar checking in the third increment; and advanced page layout

capability in the fourth increment.

Requirements
definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

Advantages

- Customer value can be delivered with each increment so system functionality is available

earlier

- Early increments act as a prototype to help elicit requirements for later increments

- Lower risk of overall project failure

- The highest priority system services tend to receive the most testing

 EVOLUTIONARY PROCESS MODELS

Complex software system evolves over a period of time. Business and product requirements often

change as development proceeds, making a straight line path to an end product unrealistic; tight

market deadlines make completion of a comprehensive software product impossible, but a limited

version must be introduced to meet competitive or business pressure. Evolutionary models are

iterative.

 PROTOTYPING

- The prototyping paradigm begins with communication where requirements and goals of Software

are defined.

- Prototyping iteration is planned quickly and modelling in the form of quick design occurs.

- The quick design leads to the Construction of the Prototype.

- Communication or feedback is used to refine requirements for the software.

Validate

increment

Develop system
increment

Design system
architecture

Integrate
increment

Valida te

system

Define outline
 requirements

Assign requirements
 to increments

System incomplete

Final
system

THE SPIRAL MODEL

- A cyclic approach for incrementally growing a system‘s degree of definition and implementation

while decreasing its degree of risk.

- Set of anchor point milestones for ensuring Stake holder commitment of easy and mutually

satisfactory solutions

Spiral model sectors

 Objective setting

o Specific objectives for the phase are identified.

 Risk assessment and reduction

o Risks are assessed and activities put in place to reduce the key risks.

 Development and validation

o A development model for the system is chosen which can be any of the generic

models.

 Planning

o The project is reviewed and the next phase of the spiral is planned.

Advantages

 Focuses attention on reuse options.

 Focuses attention on early error elimination.

 Puts quality objectives up front.

 Integrates development and maintenance.

 Provides a framework for hardware/software development.

Disadvantages

 Contractual development often specifies process model and deliverables in advance.

 Requires risk assessment expertise.

THE UNIFIED PROCESS (UP)

 It is a use-case driven, architecture-centric, iterative and incremental software process

 UP is an attempt to draw on the best features and characteristics of conventional software

process models

 Also implements many of the best principles of agile software development

 UP is a framework for object-oriented software engineering using UML (Unified Modeling

Language)

Recognize

• Importance of customer communication

• Methods for describing the customer‘s view of a system

• Easy to identify goals, such as understandability, add future changes, and reuse

The UML developers developed the Unified Process, a framework Object Oriented Software

Engineering using UML.

Five different views of the software – the use-case model, the analysis model, the design model, the

implementation model and the deployment model.

 SELECTION OF A LIFE CYCLE MODEL

Selection of proper lifecycle model is the most important task. It can be selected by keeping the

advantages and disadvantages of various models in mind. The different issues that are analyzed

before selecting a suitable life cycle model are:

 Characteristics of the software to be developed

 Characteristics of the development team

 Risk associated with the project

 Characteristics of the customer

