
System Software Module 4

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

MODULE 4

Macro Processors: Basic macro processor functions, machine dependent and

machine independent macro processor features, macro processor design options.

 MACRO PREPROCESSOR

Macro

 A macro (or macro instruction)

– It is simply a notational convenience for the programmer.

– It allows the programmer to write shorthand version of a program

– It represents a commonly used group of statements in the source program.

 For example:

 Suppose a program needs to add two numbers frequently. This requires a sequence

of instructions. We can define and use a macro called SUM, to represent this

sequence of instructions.

SUM MACRO &X,&Y

LDA &X

MOV B

LDA &Y

ADD B

MEND

Macro Preprocessor

 The macro pre-processor(or macro processor) is a system software which replaces

each macro instruction with the corresponding group of source language statements.

This operation is called expanding the macro.

 It does not concern the meaning of the involved statements during macro expansion.

 The design of a macro processor generally is machine independent.

System Software Module 4

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

 BASIC MACRO PROCESSOR FUNCTIONS

The fundamental functions common to all macro processors are: (Code to remember - DIE)

o Macro Definition

o Macro Invocation

o Macro Expansion

Macro Definition

 Macro definitions are typically located at the start of a program.

 A macro definition is enclosed between a macro header statement(MACRO) and a

macro end statement(MEND)

 Format of macro definition

macroname MACRO parameters

:

body

:

MEND

 A macro definition consist of macro prototype statement and body of macro.

 A macro prototype statement declares the name of a macro and its parameters. It has

following format:

macroname MACRO parameters

where macroname indicates the name of macro, MACRO indicates the beginning of

macro definition and parameters indicates the list of formal parameters. parameters is

of the form ¶meter1, ¶meter2,…Each parameter begins with „&‟. Whenever

we use the term macro prototype it simply means the macro name along with its

parameters.

System Software Module 4

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

 Body of macro consist of statements that will generated as the expansion of macro.

 Consider the following macro definition:

SUM MACRO &X,&Y

LDA &X

MOV B

LDA &Y

ADD B

MEND

Here, the macro named SUM is used to find the sum of two variables passed to it.

Macro Invocation(or Macro Call)

 A macro invocation statement (a macro call) gives the name of the macro instruction

being invoked and the arguments to be used in expanding the macro.

 The format of macro invocation

macroname p1, p2,...pn

 The above defined macro can be called as SUM P,Q

Macro Expansion

 Each macro invocation statement will be expanded into the statements that form the

body of the macro.

 Arguments from the macro invocation are substituted for the parameters in the macro

prototype.

 The arguments and parameters are associated with one another according to their

positions. The first argument in the macro invocation corresponds to the first

parameter in the macro prototype, etc.

 Comment lines within the macro body have been deleted, but comments on individual

statements have been retained. Macro invocation statement itself has been included

as a comment line.

 Consider the example for macro expansion on next page:

In this example, the macro named SUM is defined at the start of the program. This

macro is invoked with the macro call SUM P,Q and the macro is expanded as

LDA &P

MOV B

System Software Module 4

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

LDA &Q

ADD B

MEND

Again the same macro is invoked with the macro call SUM M,N and the macro is expanded

as

LDA &M

MOV B

LDA &N

ADD B

MEND

Figure: Example for macro expansion

Difference between Macro and Subroutine

Macros differ from subroutines in two fundamental aspects:

1. A macro call leads to its expansion, whereas subroutine call leads to its execution. So

there is difference in size and execution efficiency.

2. Statements of the macro body are expanded each time the macro is invoked. But the

statements of the subroutine appear only once, regardless of how many times the

subroutine is called.

System Software Module 4

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

 MACRO PROCESSOR ALGORITHM AND DATA STRUCTURES

Two pass macro processor

 It is easy to design a two-pass macro processor in which all macro definitions are

processed during the first pass and all macro invocation statements are expanded

during second pass.

 Such a two pass macro processor cannot handle nested macro definitions. Nested

macros are macros in which definition of one macro contains definition of other

macros.

 Consider the macro definition example given below, which is used to swap two

numbers. The macro named SWAP defines another macro named STORE inside it.

These type of macro are called nested macros.

SWAP MACRO &X,&Y

LDA &X

LDX &Y

STORE MACRO &X,&Y

STA &Y

STX &X

MEND

MEND

Inner macro

outer macro

One pass macro processor

 A one-pass macro processor uses only one pass for processing macro definitions and

macro expansions.

 It can handle nested macro definitions.

 To implement one pass macro processor, the definition of a macro must appear in the

source program before any statements that invoke that macro.

Data Structures involved in the design of one pass macro processor

 There are 3 main data structures involved in the design of one pass macro processor:

DEFTAB

NAMTAB

ARGTAB

System Software Module 4

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

Definition table (DEFTAB)

 All the macro definitions in the program are stored in DEFTAB, which includes

macro prototype and macro body statements.

 Comment lines from macro definition are not entered into DEFTAB because they will

not be a part of macro expansion.

 References to the macro instruction parameters are converted to a positional notation

for efficiency in substituting arguments.

Name table (NAMTAB)

 The macro names are entered into NAMTAB

 NAMTAB contains pointers to beginning and end of definition in DEFTAB.

Argument table (ARGTAB)

 The third data structure is an argument table (ARGTAB), which is used during

expansion of macro invocations.

 When macro invocation statements are recognized, the arguments are stored in

ARGTAB according to their position in argument list.

 As the macro is expanded, arguments from ARGTAB are substituted for the

corresponding parameters in the macro body.

 Example: Consider the following source code

SUM MACRO &X,&Y

LDA &X

MOV B

LDA &Y

ADD B

MEND

START

LDA 4500

ADD B

SUM P,Q

LDA 3000

………….

END

System Software Module 4

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

 When the macro definition for SUM is encountered, the macro name SUM along with

its parameters X and Y are entered into DEFTAB. Then the statements in the body of

macro is also entered into DEFTAB. The positional notation is used for the

parameters. The parameter &X has been converted to ?1, &Y has been converted to

?2.

 The macro name SUM is entered into NAMTAB and the beginning and end pointers

are also marked.

 On processing the input code, opcode in each statement is compared with the

NAMTAB, to check whether it is a macro call. When the macro call SUM P,Q is

recognized, the arguments P and Q will entered into ARGTAB. The macro is

expanded by taking the statements from DEFTAB using the beginning and end

pointers of NAMTAB.

 When the ?n notation is recognized in a line from DEFTAB, the corresponding

argument is taken from ARGTAB.

Figure shows the different data structures used

System Software Module 4

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

Algorithm for one pass macro processor

System Software Module 4

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

Explanation of algorithm

 The algorithm uses 5 procedures

o MACROPROCESSOR (main function)

o DEFINE

o EXPAND

o PROCESSLINE

o GETLINE

MACROPROCESSOR (MAIN function)

 This function initialize the variable named EXPANDING to false.

 It then calls GETLINE procedure to get next line from the source program and

PROCESSLINE procedure to process that line.

 This process will continue until the END of program.

System Software Module 4

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

PROCESSLINE

 This procedure checks

o If the opcode of current statement is present in NAMTAB. If so it is a macro

invocation statement and calls the procedure EXPAND

o Else if opcode =MACRO, then it indicates the beginning of a macro definition

and calls the procedure DEFINE

o Else it is identified as a normal statement(not a macro definition or macro

call) and write it to the output file.

DEFINE

 The control will reach in this procedure if and only if it is identified as a macro

definition statement.Then:

o Macro name is entered into NAMTAB

o Then the macro name along with its parameters are entered into DEFTAB.

o The statements in body of macro is also enterd into DEFTAB. References to

the macro instruction parameters are converted to a positional notation for

efficiency in substituting arguments.

o Comment lines from macro definition are not entered into DEFTAB because

they will not be a part of macro expansion.

o Store in NAMTAB the pointers to beginning and end of definition in

DEFTAB.

 To deal with Nested macro definitions DEFINE procedure maintains a counter named

LEVEL.

o When the assembler directive MACRO is read, the value of LEVEL is

incremented by 1

o When MEND directive is read, the value of LEVEL is decremented by 1

o That is, whenever a new macro definition is encountered within the current

definition, the value of LEVEL will be incremented and the while loop which

is used to process the macro definition will terminate only after the value of

LEVEL =0. With this we can ensure the nested macro definitions are properly

handled.

EXPAND

 The control will reach in this procedure if and only if it is identified as a macro call.

System Software Module 4

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

 In this procedure, the variable EXPANDING is set to true. It actually indicates the

GETLINE procedure that it is going to expand the macro call. So that GETLINE

procedure will read the next line from DEFTAB instead of reading from input file.

 The arguments of macro call are entered into ARGTAB.

 The macro call is expanded with the lines from the DEFTAB. When the ?n notation is

recognized in a line from DEFTAB, the corresponding argument is taken from

ARGTAB.

GETLINE

 This procedure is used to get the next line.

 If EXPANDING = TRUE, the next line is fetched from DEFTAB. (It means we are

expanding the macro call)

 If EXPANDING = False, the next line is read from input file.

Flow Diagram of a one pass macroprocessor

System Software Module 4

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

 MACHINE INDEPENDENT MACRO PROCESSOR FEATURES

 The features of macro which doesn‟t depends on the architecture of machine is called

machine independent macro processor features.

 The features includes:

1. Concatenation of Macro Parameters

2. Generation of Unique Labels

3. Conditional Macro Expansion

4. Keyword Macro Parameters

1. Concatenation of Macro Parameters

 Most macro processor allows parameters to be concatenated with other character

strings.

 Suppose that a program contains a series of variables named by the symbols XA1,

XA2, XA3,..., and another series of variables named XB1, XB2, XB3,..., etc.

 If similar processing is to be performed on each series of labels, the programmer

might put this as a macro instruction.

 The parameter to such a macro instruction could specify the series of variables to be

operated on (A, B, etc.). The macro processor would use this parameter to construct

the symbols required in the macro expansion (XA1, XB1, etc.).

 For example, suppose that the parameter to such a macro instruction is named &ID.

The body of the macro definition contain a statement like LDA X&ID1, which means

&ID is concatenated after the string “X” and before the string “1”

TOTAL MACRO &ID

LDA X&ID1

ADD X&ID2

STA X&ID3

MEND

The macro call TOTAL A will be expanded as:

LDA XA1

ADD XA2

STA XA3

System Software Module 4

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

 Ambiguity Problem: In the statement LDA X&ID1, & is the starting character of

the macro parameter; but the end of the parameter is not marked.

 So X&ID1 may mean

X + &ID + 1 or X +&ID1

 Most of the macro processors deal with this problem by providing a special

concatenation operator to specify the end of parameter.

 Thus LDA X&ID1 can be rewritten as . So that end of the parameter

&ID is clearly defined.

 Example:

 The example given above shows a macro definition that uses the concatenation

operator as previously described. The statement TOTAL A and TOTAL BETA shows

the invocation statements and the corresponding macro expansion.

 The macroprocessor deletes all occurrences of the concatenation operator

immediately after performing parameter substitution, so the symbol will not

appear in the macro expansion.

2. Generation of unique labels

 It is not possible to use labels for the instructions in the macro definition, since every

expansion of macro would include the label repeatedly.

 This results in duplicate labels problem if macro is invoked and expanded multiple

times.(which is not allowed by the assembler)

System Software Module 4

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

 To avoid this we can use the technique of generating unique labels for every macro

invocation and expansion.

 During macro expansion each $ will be replaced with $XX, where XX is a two

character alphanumeric counter of the number of macro instructions expansion.

 For the first macro expansion in a program, XX will have the value AA. For

succeeding macro expansions XX will be set to AB,AC etc. This allows 1296 macro

expansions in a single program

 Consider the following program:

SAMPLE

COPY

START

MACRO

LDA

0

&A,&B

&A

$LOOP ADD &B

 JLE $LOOP

 STA &B

 MEND

 COPY X,Y

 LDA M

 COPY P,Q

 END

After the macro expansion above code becomes:

SAMPLE START 0

 LDA &X

$AALOOP ADD &Y Expansion of COPY X,Y

 JLE $AALOOP

 STA &Y

System Software Module 4

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

LDA M

LDA &P

.........

$ABLOOP ADD &P

.......... Expansion of COPY P,Q

JLE $ABLOOP

STA &Q

...........

END

In the example, for the first invocation of COPY X,Y the label generated is $AALOOP and

for the second invocation COPY P,Q the label generated is $ABLOOP. Thus for each

invocation of macro unique label is generated.

3. Conditional Macro Expansion

 Arguments in macro invocation can be used to:

o Substitute the parameters in the macro body without changing the sequence of

statements expanded.(sequential macro expansion)

o Modify the sequence of statements for conditional macro expansion. This

capability increases power and flexibility of a macro language.

 Macro-Time Variables:

o Macro-time variables (often called as SET Symbol) can be used to store

working values during the macro expansion.

o It can also be used to store the evaluation result of Boolean expression

o Any symbol that begins with & and not a macro instruction parameter is

considered as macro-time variable. All such variables are initialized to zero.

o The value of macro-time variables can be modified by using the macro

processor directive SET

o The macro processor must maintain a symbol table to store the value of all

macro-time variables used. The table is used to look up the current value of

the macro-time variable whenever it is required.

Implementation of Macro-Time Conditional Structure IF-ELSE-ENDIF

 Structure of IF-ELSE_ENDIF:

System Software Module 4

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

Macroname MACRO &COND

........

IF (&COND NE ‟‟)

.part I

ELSE

.part II

ENDIF

.........

MEND

 When an IF statement is encountered during the expansion of a macro, the specified

Boolean expression is evaluated.

 If the value of this expression TRUE,

o The macro processor continues to process lines from the DEFTAB until it

encounters the ELSE or ENDIF statement.

o If an ELSE is found, macro processor skips lines in DEFTAB until the next

ENDIF.

o Once it reaches ENDIF, it resumes expanding the macro in the usual way.

 If the value of the expression is FALSE,

o The macro processor skips ahead in DEFTAB until it encounters next ELSE

or ENDIF statement.

o The macro processor then resumes normal macro expansion.

 Example for conditional macro:

COPY START 0

EVAL MACRO &X,&Y,&Z

IF (&Y LE &X)

LDA &X

SUB &Z

ELSE

LDA &Y

ADD &Z

ENDIF

MEND

STA P

....................

System Software Module 4

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

EVAL 2 ,3 ,4

STA Q

...............

END

After expansion the above code becomes:

COPY START 0

STA P

...................

LDA 3

ADD 4

STA Q

.........................

END

Implementation of Macro-time looping(or Expansion time looping) structure: WHILE-ENDW

 WHILE statement specifies that the following lines until the next ENDW statement,

are to be generated repeatedly as long as a particular condition is true. The testing

of this condition, and the looping are done during the macro under expansion.

 When a WHILE statement is encountered during the expansion of a macro, the

specified Boolean expression is evaluated.

 If expression is TRUE, the macro processor continues to process lines from

DEFTAB until it encounters the next ENDW statement.When ENDW is

encountered, the macro processor returns to the preceding WHILE, re-evaluates the

Boolean expression, and takes action based on the new value.

 If the expression is FALSE, the macro processor skips ahead in DEFTAB until it

finds the next ENDW statement and then resumes normal macro expansion.

 The example given below shows the usage of Macro-Time Looping

statement. In this example, the variable &LIMIT is a macro time variable.

System Software Module 4

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

Above loop after expansion

4. Keyword Macro Parameters

 The parameters used in macro can be of two types

a)Positional Parameters

b)Keyword Parameters

a) Positional Parameters

 Parameters and arguments are associated according to their positions in the macro

prototype and invocation. The programmer must specify the arguments in proper

order.

 Syntax : In macro definition,

macroname MACRO ¶meter1, ¶meter2,……

In macro invocation,

macroname argument1, argument2,….

Example: In macro definition,

EVAL MACRO &X, &Y

In macro invocation,

EVAL P,Q

Here &X recieves the value of P and &Y recieves the value of Q

 If an argument is to be omitted, a null argument should be used to maintain the

proper order in macro invocation statement.

 For example: Suppose a macro named EVAL has 5 possible parameters, but in a

particular invocation of the macro only the 1
st
 and 4

th
 parameters are to be

specified. Then the macro call will be EVAL P,,,S,

System Software Module 4

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

 Positional parameter is not suitable if a macro has a large number of parameters,

and only a few of these are given values in a typical invocation.

b) Keyword Parameters

 Each argument value is written with a keyword that names the corresponding

parameter.

 Arguments may appear in any order. That is not any importance to the position of

arguments.

 Null arguments no longer need to be used.

 For macros using keyword parameters the macro prototype statement

specification is different. Here each parameter name is followed by equal sign,

which identifies a keyword parameter and a default value is specified for some of

the parameters.

 Keyword parameters are easier to read and much less error-prone than the

positional parameters.

 It is of the form

&formal parameter name = <ordinary string>

 Consider the example:

INCR MACRO &X=, &Y=, &Z=

MOV &Z, &X

ADD &Z, &Y

MOV &Z, &X

MEND

The following calls are now equivalent

1) INCR X=A, Y=B, Z=C

2) INCR Y=B, X= A, Z= C

Default specification of parameters

 Default specification of parameters can also be possible in macros.

 This specification is useful in situations where a parameter has the same value in most

calls.

 When the desired value is different from the default value, the desired value can be

specified explicitly in a macro call.

System Software Module 4

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

 This specification overrides the default value of the parameter for the duration of that

macro call.

 Consider the example:

INCR MACRO &X=, &Y=, &Z=R

MOV &Z, &X

ADD &Z, &Y

MOV &Z, &X

MEND

 Then the macro call INCR X=A, Y=B will take the values A for parameter X, B for

parameter Y and R for the parameter Z.

 The macro call INCR X=A, Y=B, Z=C will take the values A for parameter X, B for

parameter Y and C for the parameter Z.

 MACRO PROCESSOR DESIGN OPTIONS

 Two Pass Macro Processor

 Same as on page 4

 It is easy to design a two-pass macro processor in which all macro definitions are

processed during the first pass and all macro invocation statements are expanded

during second pass.

 Such a two pass macro processor cannot handle nested macro definitions.

 Nested macros are macros in which definition of one macro contains definition of

other macros.

 Consider the macro definition example given below, which is used to swap two

numbers.

 The macro named SWAP defines another macro named STORE inside it. These type

of macro are called nested macros.

Here the default value R is

specified for the parameter Z

System Software Module 4

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

SWAP MACRO &X,&Y

LDA &X

LDX &Y

STORE MACRO &X,&Y

STA &Y

STX &X

MEND

MEND

Inner macro

outer macro

 One Pass Macro Processor

 Same as on page 4 (here only brief description is needed)

 A one-pass macro processor uses only one pass for processing macro definitions and

macro expansions.

 It can handle nested macro definitions.

 To implement one pass macro processor, the definition of a macro must appear in the

source program before any statements that invoke that macro.

 Data Structures involved in the design of one pass macro processor

DEFTAB

NAMTAB

ARGTAB

 Whenever a macro definition is encountered, the macro prototype and body of macro

is entered into DEFTAB. References to the macro instruction parameters are

converted to a positional notation for efficiency in substituting arguments.

 The macro name along with the begin and end pointers are entered into NAMTAB.

 Whenever a macro invocation is encountered, the arguments are entered into

ARGTAB.

 The macro call is expanded with the lines from the DEFTAB. When the ?n notation is

recognized in a line from DEFTAB, the corresponding argument is taken from

ARGTAB.

 Recursive Macro Expansion

 Invocation of one macro by another macro is called recursive macro.

 Example for recursive macro:

System Software Module 4

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

SUM MACRO &X,&Y

 STA &X

 ADD &Y

 MEND

INPUT

MACRO

&A,&B

 SUM &A,&B .i n v o k i n g the macro SUM

 MEND

Here the macro named INPUT is calling another macro named SUM. This is called as

recursive macro.

 The macro processor design algorithm discussed previously cannot handle recursive

macro invocation and expansion.

 Reasons are:

o The procedure EXPAND would be called recursively, thus the invocation

arguments in the ARGTAB will be overwritten.

o The Boolean variable EXPANDING would be set to FALSE when the “inner”

macro expansion is finished, that is, the macro process would forget that it had

been in the middle of expanding an “outer” macro.

o A similar problem would occur with PROCESSLINE since this procedure too

would be called recursively.

 Solutions:

o Write the macro processor in a programming language that allows recursive calls,

thus local variables will be retained.

o If we are writing in a language without recursion support, use a stack to take care of

pushing and popping local variables and return addresses. So the recursive calls can

be handled.

 General-Purpose Macro Processors

 The macro processor we discussed so far is related to assembly language programming.

Macro processor for high level languages have also been developed. Macro processors

which are designed for a specific language are called special purpose macro processors.

Example for special purpose macro processor is MASM Macro processor

 These special purpose macro processors are similar in general function and approach but

the implementation details differ from language to language.

System Software Module 4

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

 The general purpose macro processor do not dependent on any particular programming

language, but can be used with a variety of different languages.

 Example for a general purpose macro processor is ELENA Macro processor

Advantages

 Programmers do not need to learn many macro languages, so much of the time and

expense involved in training are eliminated.

 Although its development costs are somewhat greater than those for a specific language

macro processor, this expense does not need to be repeated for each language, thus save

substantial overall cost.

Disadvantages

In spite of the advantages noted, there are still relatively few general purpose macro

processors. The reasons are:

 Large number of details must be dealt with in a real programming language.

 There are several situations in which normal macro parameter substitution or normal

macro expansion should not occur.

o For example, comments are usually ignored by the macro processor. But each

programming languages uses its own method for specifying comments. So a

general purpose macro processor should be designed with the capability for

identifying the comments in any programming languages.

 Another problem is with the facilities for grouping together terms, expressions, or

statements.

o Some languages use keywords such as begin and end for grouping statements

while some other languages uses special characters like { }. A general purpose

macro processor may need to take these groupings into account in scanning the

source statements.

 Another problem is with the identification of tokens of the programming languages. The

tokens means the identifiers, constants, operators and keywords in the programming

language. Different languages uses different rules for the formation of tokens. So the

design of a general purpose macro processor must take this into consideration.

 Another problem is with the syntax used for macro definitions and macro invocation

statements.

System Software Module 4

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

 Macro Processing within Language Translators

 Macros can be processed

1. Outside the language translators

2. Within the Language translators

1. Macro processing outside the language translators

 The macro processors that we had discussed so far belongs to this group. They are

called macro preprocessors.

 They reads the source program statements, process the macro definitions and expand

macro invocations, producing an expanded version of the source program.

 This expanded program is then used as input to an assembler or compiler.

 So this can be considered as macro processing outside the language translators.

2. Macro processing within the language translators

 In this section we discuss the methods for combining the macro processing functions

with the language translator itself.

 Two common methods are

a) Line –by- Line Macro Processors

b) Integrated Macro Processors

a) Line-by-line macro processor

 The simplest method for combining the macro processing functions with the

language translator is a line-by-line approach.

 Using this approach, the macro processor reads the source program statement, process

the macro definitions and expand macro invocations. But it does not produce an

expanded version of source program.

 The processed lines are passed to the language translator(compiler or assembler) as

they are generated, instead of being written to an expanded source file.

 Thus macro processor operates as a sort of input routine for the assembler or

compiler.

Benefits of line –by-line macro processor

 It avoids making an extra pass over the source program. So it can be more efficient

than using a macro preprocessor.

System Software Module 4

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

 Some of the data structures required by the macro processor and the language

translator can be combined (e.g., OPTAB and NAMTAB)

 Many utility subroutines can be used by both macro processor and the language

translator. This involves scanning input lines, searching tables , converting numeric

values to internal representation etc.

 It is easier to give diagnostic messages related to the source statements.

b) Integrated Macro Processors

 Although a line-by-line macro processor may use some of the same utility routines as

language translator, the functions of macro processing and program translation are

still relatively independent.

 It is possible to have even closer cooperation between the macro processor and the

language translator. Such a scheme is called as language translator with an integrated

macro processor.

 An integrated macro processor can potentially make use of any information about

the source program that is extracted by the language translator.

 The macro processor may use the results of the translator operations such as scanning

of symbols, constants, etc without involved in processing it.

 For example in FORTRAN language, consider the statement:

DO 100 I = 1,20

where DO is a keyword, 100 is statement number, I is a variable name etc.

DO 100 I = 1

since in FORTRAN blanks are not significant, this statement is an assignment

that gives the value 1 to the variable DO100I. Thus the proper interpretation

of characters cannot be decided until the rest of the statement is examined.

Disadvantages of line-by-line and integrated macro processors

 They must be specially designed and written to work with a particular implementation

of an assembler or compiler. The cost of macro processor development is added to the

costs of the language translator, which results in a more expensive software. The

assembler or compiler will be considerably larger and more complex than using a

macro preprocessor. Size may be a problem if the translator is to run on a computer

with limited memory.

System Software Module 4

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

 TYPES OF MACRO

Different types of macro are 1. Parameterized Macro 2. Nested Macro 3. Recursive Macro

1. Parameterized Macro

 Macros which uses parameters are called parameterized macro.This type of macro has

the capability to insert the given parameters into its expansion.Macros we studied so

far belongs to this type.

 Example:

SUM MACRO &X,&Y

LDA &X

MOV B

LDA &Y

ADD B

MEND

2. Nested Macros

 Nested macros are macros in which definition of one macro contains definition of

other macros.Consider the macro definition example given below, which is used to

swap two numbers. The macro named SWAP defines another macro named STORE

inside it. These type of macro are called nested macros.

SWAP MACRO &X,&Y

LDA &X

LDX &Y

STORE MACRO &X,&Y

STA &Y

STX &X

MEND

MEND

Inner macro

outer macro

3. Recursive Macro

 Invocation of one macro by another macro is called recursive macro.Example for

recursive macro:

SUM MACRO &X,&Y

STA &X

ADD &Y

MEND

INPUT MACRO &A,&B

SUM &A,&B .i n v o k i n g the macro SUM

MEND

Here the macro named INPUT is calling another macro named SUM. This is called as
recursive macro.

