
 System Software Module 3

1

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

MODULE 3

LINKER AND LOADER

SYLLABUS

Loaders and Linkers: Basic loader functions, machine dependent and machine

independent loader features, linkage editors, dynamic linking, bootstrap loaders.

NEED FOR LINKING AND LOADING

 To execute an object program, we need:

 Relocation - which modifies the object program so that it can be loaded at an

address different from the location originally specified

 Linking - which combines two or more separate object programs and supplies

the information needed to allow references between them

 Loading and Allocation - which allocates memory location and brings the

object program into memory for execution

 System Software Module 3

2

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

 The system software which performs linking operation is called linker. The system software

which loads the object program into memory and starts its execution is called loader.

Linkers and loaders perform several related but conceptually separate actions.

 BASIC LOADER FUNCTIONS

 Fundamental functions of a loader are Bringing an object program into memory and

starting its execution.

 In this section, two basic loader designs are discussed

1. Absolute Loader

2. Bootstrap Loader

 Design of an Absolute Loader

An absolute loader is a loader that places absolute code into main memory beginning

with the initial address(absolute address) assigned by the assembler. No address manipulation is

performed. That is there is no need for relocation and linking because the program will be

loaded into the location specified in the program.

For a simple absolute loader, all functions are accomplished in a single pass as follows:

1) The Header record of object programs is checked to verify that the correct program has

been presented for loading.

2) As each Text record is read, the object code it contains is moved to the indicated address in

memory.

3) When the End record is encountered, the loader jumps to the specified address to begin

execution of the loaded program.

Algorithm for absolute loader

begin

read Header record

verify program name and length

read first Text record

while record type ≠ E

begin

//if object code is in character form, convert it into internal representation

move object code to specified location in memory

 System Software Module 3

3

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

read next object program record

end

jump to address specified in End record

end

Advantages and disadvantages of absolute loader

The advantage of absolute loader is that it is simple and efficient, but the need for

programmer to specify the actual address restricts the flexibility. As a result we cannot run

several independent programs together, sharing memory between them. Another disadvantage

is that it is difficult to use subroutine libraries while using an absolute loader.

 A Simple Bootstrap Loader

 Given an idle computer with no program in memory, how do we get things started? Two

solutions are there.

1. On some computers, an absolute loader program is permanently resident in a read-

only memory (ROM). When some hardware signal occurs, the machine begins to

execute this ROM program. This is referred to as a bootstrap loader.

2. On some computers, there‟s a built-in hardware which read a fixed-length record

from some device into memory at a fixed location. After the read operation, control

is automatically transferred to the address in memory.

When a computer is first turned on or restarted, a special type of absolute loader, called

a bootstrap loader, is executed. This bootstrap loader loads the first program to be run by the

computer – usually an operating system.

Working of a SIC Bootstrap loader

 SIC uses the above mentioned second method.

 The bootstrap begins at address 0 in the memory of the machine.

 It loads the operating system at address 80.

 Each byte of object code to be loaded is represented on device F1 as two hexadecimal

digits just as it is in a Text record of a SIC object program.

 The object code from device F1 is always loaded into consecutive bytes of memory,

starting at address 80.

 System Software Module 3

4

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

 The main loop of the bootstrap keeps the address of the next memory location to be

loaded in register X.

 After all of the object code from device F1 has been loaded, the bootstrap jumps to

address 80, which begins the execution of the program that was loaded.

 Much of the work of the bootstrap loader is performed by the subroutine GETC.

 GETC is used to read and convert a pair of characters from device F1 representing

1 byte of object code to be loaded. For example, two bytes = C “D8” „4438‟H

converting to one byte „D8‟H.

 The resulting byte is stored at the address currently in register X, using STCH

instruction that refers to location 0 using indexed addressing.

 The TIXR instruction is then used to add 1 to the value in X.

Bootstrap Loader for SIC/XE

This bootstrap main function reads object code from device F1 and enters it into memory starting at address 80

(hexadecimal) . After all of the code from dev F1 has been seen entered into memory, the bootstrap executes a

jump to address 80 to begin execution of the program just loaded. Register X contains the next address to be

loaded.

BOOT START 0

 CLEAR A CLEAR REGISTER A TO ZERO

 LDX #128 INITIALIZE REGISTER X TO HEX 80

LOOP JSUB GETC READ HEX DIGIT FROM PROGRAM BEING LOADED

 RMO A, S SAVE IN REGISTER S

 SHIFTL S , 4 MOVE TO HIGHORDER 4 BITS OF BYTE

 JSUB GETC GET NEXT HEX DIGIT

 ADDR S ,A COMBINE DIGITS TO FORM ONE BYTE

 STCH 0 ,X STORE AT ADDRESS IN REGISTER X

 TIXR X ADD 1 TO MEMORY ADDRESS BEING LOADED

 JUMP LOOP LOOP UNTIL END OF INPUT IS REACHED

 System Software Module 3

5

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

GETC subroutine read one character from input device and convert it from ASCII code to

hexadecimal digit value. The converted digit value is returned in register A. When an end of file

is read, control is transferred to the starting address (hex 80)

GETC TD INPUT TEST INPUT DEVICE

 JEQ GETC LOOP UNTIL READY

 RD INPUT READ CHARACTER

 COMP #4 IF CHARACTER IS HEX 04 (END OF FILE) ,

 JEQ 80 JUMP TO START OF PROGRAM JUST LOADED

 COMP #48 COMPARE TO HEX 30 (CHARACTER ' 0 ')

 JLT GETC SKIP CHARACTERS LESS THAN ' 0 '

 SUB #48 SUBTRACT HEX 30 FROM ASCII CODE

 COMP 10 IF RESULT IS LESS THAN 10 , CONVERSION IS

 JLT RETURN COMPLETE. OTHERWISE, SUBTRACT 7 MORE

 SUB #7 (FOR HEX DIGITS 'A' THROUGH 'F ')

RETURN RSUB RETURN TO CALLER

INPUT BYTE X'F1 ' CODE FOR INPUT DEVICE

END LOOP

 MACHINE DEPENDENT LOADER FEATURES

The features of loader that depends on machine architecture are called machine

dependent loader features. It includes:

1. Program Relocation

2. Program Linking

 Program Relocation (Relocating Loader)

 The absolute loader has several disadvantages. One of the most obvious is the need for the

programmer to specify the actual address at which it will be loaded into memory.

 On a simple computer with a small memory the actual address at which the program will be

loaded can be specified easily.

 On a larger and more advanced machine, we often like to run several independent

programs together, sharing memory between them. We do not know in advance where a

program will be loaded. Hence we write relocatable programs instead of absolute ones.

 System Software Module 3

6

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

 Writing absolute programs also makes it difficult to use subroutine libraries efficiently.

This could not be done effectively if all of the subroutines had preassigned absolute

addresses.

 The need for program relocation is an indirect consequence of the change to larger and

more powerful computers. The way relocation is implemented in a loader is also dependent

upon machine characteristics.

 Program relocation is explained in Module 2

 Loaders that has the capability to perform relocation are called relocating loaders or

relative loaders.

 There are two methods for specifying relocation in object program

1. Modification Record

2. Relocation Bit

Modification Record

 A Modification record is used to describe each part of the object code that must be

changed when the program is relocated.

 The Modification has the following format:(Its explained in detail in module 2)

 Each Modification record specifies the starting address and length of the field whose

value is to be altered. It then describes the modification to be performed.

 Consider the following object program, here the records starting with M represents the

modification record. In this example, the record M 000007 05 + COPY is the

 System Software Module 3

7

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

modification suggested for the statement at location 000007 and requires modification

of 5-half bytes and the modification to be performed is add the value of the symbol

COPY, which represents the starting address of the program.(means add the starting

address of program to the statement at 000007). Similarly for other records.

The Modification record is not well suited for certain cases. In some programs the

addresses in majority of instructions need to be modified when the program is relocated. This

would require large number of Modification records, which results in an object program more

than twice as large as the normal. In such cases, the second method called relocation bit is used.

Relocation Bit

 To overcome the disadvantage of modification record, relocation bit is used.

 The Text records are the same as before except that there is a relocation bit associated

with each word of object code.

 Since all SIC instructions occupy one word, this means that there is one relocation bit

for each possible instruction.

 The relocation bits are gathered together into a bit mask following the length indicator

in each Text record.

 Text record format

 System Software Module 3

8

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

 If the relocation bit corresponding to a word of object code is set to 1, the programs

starting address is to be added to this word when the program is relocated.

 A bit value of 0 indicates that no modification is necessary.

 If a Text record contains fewer than 12 words of object code, the bits corresponding to

unused words are set to 0.

 In the following object code, the bit mask FFC (representing the bit string

111111111100) in the first Text record specifies that all 10 words of object code are to

be modified during relocation.

 Program Linking (Linking Loader)

 Many programming languages allow us to write different pieces of code called modules,

separately. This simplifies the programming task because we can break a large program

into small, more manageable pieces. Eventually, though, we need to put all the modules

together. Apart from this, a user code often makes references to code and data

defined in some "libraries".

 Linking is the process in which references to "externally" defined symbols are processed

so as to make them operational.

 A linker or link editor is a program that combines object modules to form an executable

program.

 A Linking Loader is a program that has the capability to perform relocation, linking and

loading. Linking and relocation is performed at load time.

 System Software Module 3

9

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

Algorithm and Data Structures for a Linking Loader

 The algorithm for a linking loader is considerably more complicated than the absolute

loader algorithm.

 A linking loader usually makes two passes over its input, just as an assembler does.

 In terms of general function, the two passes of a linking loader are quite similar to the

two passes of an assembler:

o Pass 1 assigns addresses to all external symbols.

o Pass 2 performs the actual loading, relocation, and linking.

 The main data structure needed for our linking loader is an external symbol table

ESTAB. This table, which is analogous to SYMTAB in our assembler algorithm, is

used to store the name and address of each external symbol in the set of control sections

being loaded.

 Two other important variables are PROGADDR (program load address) and

CSADDR (control section address).

(1) PROGADDR is the beginning address in memory where the linked program is to be

loaded. Its value is supplied to the loader by the OS.

(2) CSADDR contains the starting address assigned to the control section currently

being scanned by the loader. This value is added to all relative addresses within the

control section to convert them to actual addresses.

Linking loader PASS 1

 During Pass 1, the loader is concerned only with Header and Define records.

 Variables and Data structures used in PASS1

o PROGADDR (Program Load Address) from OS

 System Software Module 3

10

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

o CSADDR (Control Section Address)

o CSLTH (Control Section Length)

o ESTAB (External Symbol Table)

Algorithm for Pass 1

Explanation of Pass 1 algorithm

 The beginning load address for the linked program (PROGADDR) is obtained from the

OS. This becomes the starting address (CSADDR) for the first control section in the

input sequence.

 The control section name from Header record is entered into ESTAB, with value given

by CSADDR.

 All external symbols appearing in the Define record for the control section are also

entered into ESTAB. Their addresses are obtained by adding the value specified in the

Define record to CSADDR.

 System Software Module 3

11

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

 When the End record is read, the control section length CSLTH (which was saved from

the End record) is added to CSADDR. This calculation gives the starting address for the

next control section in sequence.

 At the end of Pass 1, ESTAB contains all external symbols defined in the set of control

sections together with the address assigned to each.

Linking loader PASS 2

 Pass 2 of linking loader performs the actual loading, relocation, and linking of the

program.

Algorithm for Pass 2

Explanation of Pass 2 Algorithm

 As each Text record is read, the object code is moved to the specified address (plus the

current value of CSADDR).

 System Software Module 3

12

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

 When a Modification record is encountered, the symbol whose value is to be used for

modification is looked up in ESTAB.

 This value is then added to or subtracted from the indicated location in memory.

 The last step performed by the loader is usually the transferring of control to the loaded

program to begin execution. The End record for each control section may contain the

address of the first instruction in that control section to be executed. Loader takes this as

the transfer point to begin execution.

 MACHINE INDEPENDENT LOADER FEATURES

The features of loader that doesn‟t depends the architecture of machine are called

machine independent loader features. It includes:

o Automatic Library search

o Loader Options that can be selected at the time of loading and linking

 Automatic Library Search

One of the important machine independent feature of loader is to use an automatic

library search process for handling external reference.Many linking loaders can

automatically incorporate routines from a subprogram library into the program being loaded.

The subroutines called by the program being loaded are automatically fetched from the library,

linked with the main program, and loaded. Linking loaders that supp ort automatic library

search must keep track of external symbols that are referred to, but not defined, in the primary

input to the loader.

At the end of Pass 1, the symbols in ESTAB that remain undefined represent unresolved

external references. The loader searches the library or libraries specified for routines that

contain the definitions of these symbols, and processes the subroutines found by this search

exactly as if they had been part of the primary input stream. Note that the subroutines fetched

from a library in this way may themselves contain external references. It is therefore necessary

to repeat the library search process until all references are resolved. If unresolved external

references remain after the library search is completed, these must be treated as errors.

Automatic Library search process is described below:

1. Enter the symbols from each Refer record into ESTAB

2. When the definition is encountered (Define record), the address is assigned

 System Software Module 3

13

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

3. At the end of Pass 1, the symbols in ESTAB that remain undefined represent unresolved

external references

4. The loader searches the libraries specified (or standard) for undefined symbols or

subroutines

The library search process may be repeated since the subroutines fetched from a library

may themselves contain external references. Programmer defined subroutines have higher

priority. So the programmer can override the standard subroutines in the library by supplying

their own routines. Searching on the libraries is done by scanning through the define records of

all the object programs in the library. This method is quiet inefficient. So we go for a directory

structure. Assembled or compiled versions of the subroutines in a library is structured using a

directory that gives the name of each routine and a pointer to its address within the library. Thus

the library search involves only a search on the directory, followed by reading the object

programs indicated by this search.

The library contains an internal directory where each files along with their address are

stored. This facilitates the linking of library functions more easy, because whenever a library

function is needed its address can be directly obtained from internal directory.

 Loader Options

Many loaders allow the user to specify options that modify the standard processing.

Option 1:

 allows the selection of alternative sources of input.

 Ex. INCLUDE program-name (library-name)

 System Software Module 3

14

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

This direct the loader to read the designated object program from a library and treat it

as if it were part of the primary loader input.

Option 2:

 allows the user to delete external symbols or entire control sections.

 Ex. DE LETE csect-name

This instruct the loader to delete the named control section(s) from the set of programs

being loaded.

Option 3:

 allows the user to change the name of external symbol

 Ex: CHANGE name1, name2

this cause the external symbol name1 to be changed to name2 wherever it appears in

the object programs.

Option 4:

 This involves the automatic inclusion of library routines to satisfy external references.

 Ex: LIBRARY MYLIB

Such user-specified libraries are normally searched before the standard system libraries.

This allows the user to use special versions of the standard routines.

Option 5:

 NOCALL STDDEV, PLOT, CORREL

 To instruct the loader that these external references are to remain unresolved. This

avoids the overhead of loading and linking the unneeded routines, and saves the

memory space that would otherwise be required.

Example:

If we would like to use the utility routines READ and WRITE instead of RDREC and

WRREC in our programs, for a temporary measure, we use the following loader

commands

INCLUDE READ(UTLIB)

INCLUDE WRITE(UTILB)

DELETE RDREC, WRREC

CHANGE RDREC, READ

CHANGE WRREC, WRITE

 System Software Module 3

15

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

These commands would ask the loader to include control sections READ and

WRITE from the library UTLIB and to delete the control sections WRREC and

RDREC. The first CHANGE command would change all the external references to the

symbol RDREC to be changed to refer to READ and second CHANGE will cause

references to WRREC to be changed to WRITE.

 LOADER DESIGN OPTIONS (or Variants of basic loader model)

In this section some alternatives for basic loader models are discussed.

1. Linkage Editors – which perform linking prior to load time

2. Dynamic Linking – which perform the linking function at execution time.

3. Bootstrap Loaders – used to load operating system or the loader into the

memory.

 Linkage Editors

Linking loaders perform all linking and relocation at load time. There are two

alternatives: Linkage editors, which perform linking prior to load time, and dynamic linking, in

which the linking function is performed at execution time. Difference between linkage editor

and linking loader is explained below:

• A linking loader performs all linking and relocation operations, including automatic

library search if specified, and loads the linked program directly into memory for execution.

• A linkage editor produces a linked version of the program (load module or executable

image), which is written to a file or library for later execution.

 A linkage editor produces a linked version of the program (load module or executable

image), which is written to a file or library for later execution. When the user is ready to run

the linked program, a simple relocating loader can be used to load the program into memory.

The only object code modification necessary is the addition of an actual load address to

relative values within the program.

 System Software Module 3

16

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

Figure: Processing of an object program using a) linking loader and b)linkage editor

 The Linkage Editor(LE) performs relocation of all control sections relative to the start of

the linked program. Thus, all items that need to be modified at load time have values that are

relative to the start of the linked program. This means that the loading can be accomplished

in one pass with no external symbol table required.

 If a program is to be executed many times without being reassembled, the use of a linkage

editor substantially reduces the overhead required. Linkage editors can perform many useful

functions besides simply preparing an object program for execution. Resolution of external

reference and library searching are only performed once for linkage editor.

 If a program is under development or is used infrequently, the use of a linking loader

outperforms a linkage editor.

 Consider a program PLANNER with a number of subroutines. You want to improve a

subroutine (PROJECT) of the program (PLANNER) without going back to the original

versions of all of the other subroutines. For that you can use linkage editor commands as

follows:

INCLUDE PLANNER (PROGLIB)

DELETE PROJECT // d e l e t e from e x i s t i n g PLANNER

INCLUDE PROJECT (NEWLIB) // includ e new v e r s i o n

REPLACE PLANNER (PROGLIB)

 System Software Module 3

17

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

 Linkage editors perform linking operations before the program is loaded for
execution.

 Linking loaders perform these same operations at load time.

 Dynamic linking, dynamic loading, or load on call postpones the linking
function until execution time. That is a subroutine is loaded and linked to the

rest of the program when it is first called.

 Dynamic Linking/Dynamic Loading/Load-on-call

 Dynamic linking, dynamic loading, or load on call postpones the linking function

until execution time. That is a subroutine is loaded and linked to the rest of the program

when it is first called.

 Dynamic linking is often used to allow several executing programs to share one copy of

a subroutine or library (eg. run-time support routines for a high-level language like C.)

 With a program that allows its user to interactively call any of the subroutines of a large

mathematical and statistical library, all of the library subroutines could potentially be

needed, but only a few will actually be used in any one execution. Dynamic

linking can avoid the necessity of loading the entire library for each execution except

those necessary subroutines.

 For example, that a program contains subroutines that correct or clearly diagnose error

in the input data during execution. If such error are rare, the correction and diagnostic

routines may not be used at all during most execution of the program. However, if the

program were completely linked before execution, these subroutines need to be loaded

and linked every time.

 Fig 3.14 illustrates a method in which routines that are to be dynamically loaded must

be called via an OS service request.

 System Software Module 3

18

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

Figure: Loading and calling of a subroutine using dynamic linking

 System Software Module 3

19

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

 Fig (a): Whenever the user program needs a subroutine for its execution, the program

makes a load-and-call service request to OS(instead of executing a JSUB instruction

referreing to an external symbol) . The parameter of this request is the symbolic

name(ERRHANDL) of the routine to be called.

 Fig (b): OS examines its internal tables to determine whether or not the routine is

already loaded. If necessary, the routine is loaded from the specified user or system

libraries.

 Fig (c): Control is then passed from OS to the routine being called.

 Fig (d): When the called subroutine completes it processing, it returns to its caller (i.e.,

OS). OS then returns control to the program that issued the request.

 Fig (e): If a subroutine is still in memory, a second call to it may not require another

load operation. Control may simply be passed from the dynamic loader to the called

routine.

 Bootstrap Loaders

 Given an idle computer with no program in memory, how do we get things started?Two

solutions are there.

1. On some computers, an absolute loader program is permanently resident in a read-

only memory (ROM). When some hardware signal occurs, the machine begins to

execute this ROM program. This is referred to as a bootstrap loader.

2. On some computers, there‟s a built-in hardware which read a fixed-length record

from some device into memory at a fixed location. After the read operation, control

is automatically transferred to the address in memory. If the loading process requires

more instructions than can be read in a single record, this first record causes the

reading of others, and these in turn can cause the reading of more records

When a computer is first turned on or restarted, a special type of absolute loader, called

a bootstrap loader, is executed. This bootstrap loader loads the first program to be run by the

computer – usually an operating system.

 System Software Module 3

20

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

Module 4 Summary:

 Basic Loader functions - Design of absolute loader, Simple bootstrap Loader

 Machine dependent loader features- Relocation, Program Linking,

Algorithm and data structures of two pass Linking Loader

 Machine independent loader features – Automatic Library Search, Loader

options

 Loader Design Options – Linkage Editors, Dynamic Linking, Bootstrap

Loaders

