
1

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

SYLLABUS

MODULE 2

 Assemblers: Basic assembler functions, machine dependent and machine

independent assembler features, one-pass assemblers, multi pass assemblers,

MASM assembler,

 SPARC assembler

 MACHINEINDEPENDENTASSEMBLERFEATURES

The featureswhichareNOTcloselydependenttomachinearchitecturearecalled machine

independent assembler features. The machine independent assembler features includes:

1. Literals

2. SymbolDefiningStatements

3. Expressions

4. ProgramBlocks

5. ControlSections andProgramLinking

 LITERALS

 It is convenient for the programmer to be able to write the value of a constant operand as

part of the instruction that uses it.

 Thisavoidshavingtodefinetheconstantelsewhereintheprogramandmakealabelforit.

 SuchanoperandiscalledaLiteralbecausethevalueis literallyintheinstruction.

 Aliteralisdefinedwithaprefix'='followedbyaspecificationoftheliteralvalue.

 Considerthefollowingexample:

.

.

LDA FIVE

.

.

FIVE WORD5

Using theconceptofliteralwecanrewritethe abovecode as:

.

.

LDA =X’05’

2

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

Differencebetweenliteraloperandsandimmediate operands

 Forliteralsprefix is=,and forimmediateaddressingprefixis #.

 Inimmediateaddressing,theoperand value isassembledaspartofthe machine instruction, ie

there is no memory reference.

Lineno LocationCounter

55 0020 LDA #03 010003

Intheaboveexamplethe last 12bitsofthe machinecodecorresponds to003whichisequal to the

immediate value.

 With a literal, the assembler generates the specified value as a constant at some other

memory location. The address of this generated constant is used as the target address (TA)

for the machine instruction (using PC-relative or base-relative addressing with memory

reference.)

LiteralPool

 All theliteral operandsusedin aprogram aregatheredtogetherintooneormoreliteral pools.

This is usually placed at the end of the program.

 Insomecases,itisdesirabletoplaceliteralsintoapoolatsomeotherlocationinthe object program.

To allow this an assembler directive LTORG is used.

 Whenthe assembler encounters a LTORG statement, it generates a literal pool containing

all literal operands used since previous LTORG or the beginning of the program

 LiteralsplacedinapoolbyLTORGwillnotberepeatedinapoolattheendofthe program.

 Reason for using LTORG is tokeepthe literaloperand close to the instruction(otherwise

PC-relative addressing may not be allowed)

3

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

LiteralTable (LITTAB)

 Aliteraltable(LITTAB) iscreatedforstoringtheliteralswhichareusedinthe program.

 The literaltablecontainstheliteralname, operandvalueandlength.

 Theliteraltableisusuallycreatedasahashtableontheliteralname.

Duplicateliterals

 Thesame literalused morethanonce intheprogram, thenit canbeconsider asaduplicate literal.

 Insuchcases,onlyone copyofthe specifiedvalueneedstobestored

 Torecognizetheduplicateliterals,twomethodsarethere

1. Comparethecharacterstringsdefiningthem

Easiertoimplemente.g.=X’05’.Butnotpossible tohandlethe literalslike

=C’EOF’and=X’454F46’.

Herebothliteralsare sameintheformoftheirdatavalue.

2. Comparethegenerateddatavalue

Possible to handle the literals like=C’EOF’ and=X’454F46’. Herebothliteralsare same in

the formof their generated data value. So comparison based on generated data value is

needed to identify duplicate literals or not. But this is difficult to implement compared to

the first method.

ImplementationofLiterals

During Pass-1:

The literal encountered is searched in the literal table. If the literal already exists, no

action is taken; if it is not present, the literal is added to the LITTAB and for the address

value it waits till it encounters LTORG or END statement for literal definition.

When Pass 1 encounters a LTORG statement or the end of the program, theassembler

makes a scan ofthe literaltable. At this time each literal currently in the table

is assigned an address. As addresses are assigned, the location counter is updated to reflect

the number of bytes occupied by each literal.

DuringPass-2:

The assembler searches the LITTAB for each literal encountered in the instructionand

replaces it with itsequivalent value as ifthese valuesare generated byBYTEorWORD. The

following figure shows the difference between the SYMTAB and LITTAB

4

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

 SYMBOLDEFININGSTATEMENTSANDEXPRESSIONS

EQU Statement:

 Mostassemblersprovideanassemblerdirectivethatallowstheprogrammertodefine symbols

and specify their values.

 ThedirectiveusedforthisEQU (Equate).

 The generalformofthe statementis

Symbol EQUvalue

 This statement defines the given symbol (i.e., entering in the SYMTAB) and assigns the

value specified to that symbol.

 The value can be a constant or an expression involving constants and any other

symbolwhich is already defined.

 Onecommonusage isto definesymbolic namesthat canbeusedto improvereadability in

place of numeric values. For example

LDA#100

Thisloads theregisterA withimmediatevalue100, this does notclearlymention what exactly

this value indicates. If a statement is included as:

MAXLENEQU 100

and then LDA#MAXLEN then it clearlyindicatesthatthe value ofMAXLEN issome

maximum length value and it is to be loaded in A register.

 When the assembler encounters EQU statement, it enters the symbol MAXLEN alongwith

its value in the symbol table. During LDA the assembler searches the SYMTAB for its

entry and its equivalent value as the operand in the instruction.

5

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

 The object code generated is the same for both the options discussed, but is easier to

understand.

 If the maximum length is changed from 100 to 500, it is difficult to change if it is

mentioned as an immediate value wherever required in the instructions. We have to scan

the whole program and make changes wherever 100 is used.

 If we mention this value in the instruction through the symbol defined by EQU, we may

not have to search the whole program but change only the value of MAXLENGTH in the

EQU statement.

ORGStatement:

 This directive can be used to indirectly assign values to the symbols. The directive is

usually called ORG (means origin).

 Itsgeneralformatis:

ORGvalue

wherevalueisaconstantoranexpressioninvolvingconstantsandpreviouslydefined symbols.

 Whenthis statement isencountered during assemblyofa program, the assembler resets its

location counter (LOCCTR) to the specified value.

 Since the values of symbols used as labels are taken from LOCCTR, the ORGstatement

will affect the values of all labels defined until the next ORG is encountered.

 Eg:ORGAlPHA

Whenthis statement is encountered during assemblyofa program, the assembler resets its

location counter (LOCCTR) to the value of ALPHA.

 EXPRESSIONS

 Theassemblersallow theuseofexpressionsasoperand

 Theassembler evaluatestheexpressionsandproducesasingleoperandaddressorvalue.

 Assemblers generally allow arithmetic expressions as operands formed according to the

normalrules using arithmetic operators +, - *, /.(Division is usuallydefined to produce an

integer result.)

 Individualterms maybeconstants,user-definedsymbols,orspecialterms.

 The onlyspecialtermused is * (the current value of locationcounter) which indicates the

value of the next unassigned memory location.

6

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

Thus the statement

BUFFENDEQU*

Assigns the value of LOCCTR to BUFFEND, which is the address of the next byte

following the buffer area.

 Some values in the object program are relative to the beginning of the program and some

are absolute (independent of the program location, like constants). Hence, expressions are

classified as either absolute expression or relative expressions depending on the type of

value they produce.

 AbsoluteExpressions:

 The expression that uses only absolute terms is absolute expression. Absolute

expression may contain relative term provided the relative terms occur in pairs with

opposite signs for each pair.

 Example:

MAXLENEQUBUFEND-BUFFER

Intheabove instructionthedifference intheexpressionBUFEND-BUFFERgivesa

value that does not depend on the location of the program and hence gives an

absolute value

 RelativeExpressions:

 Theexpressionthatusesthevaluesrelativetotheprogramarecalledrelative expression.

 Absolute expression may contain relative term provided the relative terms occur in

pairs with opposite signs for each pair.

 Example:

MAXLENEQUALPHA+BUFEND-BUFFER

In the above instruction the difference in the expression BUFEND-BUFFERgives a

value that does not depend on the location of the program but it is added to the

value of ALPHA which is program relative. Hence this expression is relative.

 PROGRAMBLOCKS

 Program blocks allow the generated machine instructions and data to appear in theobject

program in a different order by separating blocks for storing code, data, stack, and

larger data block.

 ToimplementtheprogramblocktheAssemblerDirective usedisUSE

7

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

 Syntaxis

USE[blockname]

 Atthebeginning,statementsareassumed to bepartoftheunnamed (ordefault)block.

 Whenever a USE CDATAstatement is encountered, statements upto next USE belongs

to the program block named CDATA.

 IfnoUSEstatementsareincluded, theentireprogrambelongstothissingleblock.

 Each program block may actually contain several separate segments of the source

program. Assemblers rearrange these segments to gather together the pieces of each

block and assign address.

 Considerthefollowingexample:

COPY START0

 LDA LENGTH

 ………

 ………

 USE CDATA

MAX RESW 1

LENGTH RESW 1

 USE CBLOCKS

BUFFER RESB 00

 ………

//Subroutinetoreadrecord intobuffer

USE

RDREC CLEAR XLDA

 INPUT

………..

…………

USE CDATA

INPUT BYTE X’F1’

…………

//Subroutinetowriterecordfrombuffer

USE

WRREC STA

………

MAX

 USE CDATA

MIN RESW 1

BUFEND RESW 1

8

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

 Intheexamplegiveabovethreeprogramblocksareused :

DEFAULT: executable instructions.

CDATA:alldataareasthat arelessin length.

CBLOCKS:alldata areasthatconsistsoflargerblocksof memory.

DEFAULT

CDATA

CBLOCKS

Arrangingcodeintoprogramblocks:

DuringPass1assemblerperformsthefollowingoperations:

 Aseparatelocationcounterforeachprogramblockismaintained.

 Atthebeginningofablock,LOCCTRissetto 0.

 SaveandrestoreLOCCTRwhenswitchingbetweenblocks.

 Assigneachlabelanaddress relative tothestartoftheblock.

 StoretheblocknameornumberintheSYMTABalongwiththeassignedrelative address of
the label

 Indicate theblocklength asthelatestvalueof LOCCTRforeach blockat theendof Pass1

 Assigntoeachblockastartingaddressintheobjectprogrambyconcatenatingthe program
blocks in a particular order

 Attheend ofpass1ablocktableis generated.

BlockTable

BlockName
Block

Number

Starting

Address

Ending

Address

Length of

Block

Default 0 0000 0065 0066

CDATA 1 0066 0070 000B

CBLKS 2 0071 1070 1000

DuringPass2assemblerperformsthefollowingoperations:

 Calculate theaddressforeachsymbol relativetothestart of theobjectprogram by adding

o Thelocationofthe symbolrelativetothe startofitsblock

o Thestarting addressofthisblock

ProgramBlocksLoadedinMemory

Separationofprogramintoblocksresultsinthemovementofthelargebuffer

(CBLKS)totheendoftheobjectprogram.Asaresultextendedformat,baseregister

9

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

addressingetcareno longerneeded.Modificationrecordsarealso not needed.Thisimproves

program readability.

 CONTROLSECTIONS

 A control section is a part of the program that maintains its identity after assembly;

each control section can be loaded and relocated independently of the others.Different

control sections are most often used for subroutines or other logical subdivisions.

 The programmer can assemble, load, and manipulate each of these control sections

separately. Because of this, there should be some means for linking control sections

together.

 For example, instructions in one control section may refer to the data or instructionsof

other control sections. Since control sections are independently loaded and relocated,

the assembler is unable to process these references in the usual way. Such references

between different control sections are called external references.

 The assembler generates the information about each of the external references that

willallowtheloadertoperformtherequiredlinking.Whenaprogramiswritten

10

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

usingmultiplecontrolsections,thebeginningofeachofthecontrolsectionis indicated by an

assembler directive: CSECT

 Thesyntax

secnameCSECT

 TheassemblermaintainseparateLOCCTRbeginningat0foreachcontrolsections.

 Controlsections differ fromprogramblocks inthattheyare handled separatelybythe

assembler.

HandlingofExternalReferences

Instructions in one controlsection may need to refer to instructions or data located in

another section. This is called as external references. The external references are indicated

by two assembler directives: EXTDEF and EXTREF

EXTDEF(ExternalDefinition)

 Itdefinesthesymbolsthataredefinedinthiscontrolsectionandmaybeusedby other sections

 Syntax-EXTDEFname [,name]

 Ex: EXTDEF BUFFER, BUFEND, LENGTH which means the symbols BUFFER,

BUFFEND and LENGTH are defined in this control section and may be used bysome

other control sections.

EXTREF(ExternalReference)

 Itnames symbols thatare usedin this section butare definedin some other control

section.

 Syntax- EXTREFname [,name]

 Ex: EXTREF A,B which means the symbols A and B are used in this control section

but are defined in some other control section.

The assembler must include information in the object program that will cause the loader to

handle external references properly.For this three types of records are used in object

program: Define, Refer and Modification Record.

11

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

The formatofmodificationrecordwhichwestudiedinModule2 isrevisedtosupport the

handling of external references.

Considerthefollowingcode segments:

COPY START0

EXTDEFBUFFER,BUFFEND,LENGTH

EXTREFA,B

LDA ALPHA

………………

………………

………………

BUFFER WORD 3

BUFFEND EQU *

LENGTH EQU BUFFEND-BUFFER

RDREC CSECT

EXTREF BUFFER,BUFFEND,LENGTH

………………………..

………………………..

…………………………

LDA BUFFER

…………………………

…………………………..

………………………….

END

12

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

Theobjectprogramgeneratedfortheabovecodesegmentis:

H^ COPY^ 000000^001033

D^BUFFER^000033^BUFEND^001033^LENGTH^00002D

R^A ^B

T^……………………………

T^……………………………

……………………………….

………………………………

M^000004^05^+RDREC

………………………………

E^000000

 ASSEMBLERDESIGNOPTIONS

Inthissection,twoalternativestothestandardtwo-passassemblerlogicisdiscussed.

Theyare:

SinglePassAssembler

Multipass Assembler

 SINGLEPASSASSEMBLER

These assemblers are used when it is necessary or desirable to avoid a second pass

overthe sourceprogram. The mainproblemindesigning the assembler using single passwas to

resolve forward references.

One-pass assemblers could produce object codes either in memory or to external

storage. One-pass assemblers usually need to modify object code already generated, so

whether object code is stored in memoryor external storage imposes different considerations

on assembler design. Based onthis one-pass assemblers can be classified into two types:

1. One thatproduces objectcode directly in memory forimmediate execution (Load-

and-go assemblers).

2. Onepassassemblergeneratingobjectcodeforlaterexecution.

1. Load-and-GoAssembler

Load-and-go assembler generates their object code in memory for immediate

execution. Sinceno object programiswrittenout,no loader is needed. Itisusefulinasystem with

frequent program development and testing. Since the object program is produced in memory,

the handling of forward references becomes less difficult.

13

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

WorkingofOne passassembler(LoadandGoAssembler)

Inload-and-Goassemblerswhenaforwardreferenceisencountered:

 Omits the operand address if the symbol has not yet been defined(placess 000 at the

operand addressesposition)

 EntersthisundefinedsymbolintoSYMTABandindicatesthatitisundefined

 Adds thelocation atwhich the operand is referenced to a listof forward

referencesassociated with the SYMTAB entry

 Whenthe definition forthe symbolisencountered, scansthe reference list and inserts the

address.

 Attheendoftheprogram,reportstheerroriftherearestillSYMTABentriesindicated

undefined symbols(* indicates undefined).

 When the END statement is encountered, search SYMTAB for the symbol named in

the END statement and jumps to this location to begin execution if there is no error.

In short, whenever any undefined symbol is encountered it will insert into SYMTAB as

a new entry and indicate that it is undefined and also adds the location at which the

operand is referenced as a linked list associated with that SYMTAB entry. When the

definition forthe symbolis encountered, scans the reference list and inserts the address

in proper location.

AlgorithmforSinglePassAssembler(LoadandGoAssembler)

begin

readfirstinput line

ifOPCODE=‘START’then

{ save#[OPERAND]asstartingaddress

initialize LOCCTRas starting address

}//endofifOPCODE=‘START’ else

initialize LOCCTR to 0

writeHeaderrecordtoobjectprogram read

next input line

whileOPCODE≠‘END’

{ ifthisisnotacommentline

{ ifthereisa symbol intheLABEL field

{ searchSYMTABfor LABEL

14

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

if found

{ ifsymbol valueasnull

{ setsymbolvalueasLOCCTR

search the attached forward reference list(if exist) and the address

ofthesymbol isinserted intoanyinstructionspreviouslygenerated

deletetheforwardreferencelistattachedtothatsymbol

}

else

}

insert(LABEL,LOCCTR)intoSYMTAB

}//endofifthereisa symbol intheLABELfield search

OPTAB for OPCODE

if found

searchSYMTABforOPERANDADDRESS if

found

{ ifsymbol valuenot equaltonull

storesymbolvalueasoperandaddress

}

else

else

insertanodewith address LOCCTRattheendofthe

forward reference list of that symbol

{ insert(symbolname,null)

insertanodewith addressLOCCTRattheendoftheforward reference

list of that symbol

}

add 3 to LOCCTR

elseifOPCODE =’WORD’

add3toLOCCTR

else if OPCODE =’RESW’

add3#[OPERAND]toLOCCTR

elseifOPCODE =’RESB’

add#[OPERAND]toLOCCTR

elseifOPCODE =‘BYTE’

15

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

{ findlengthofconstantinbytes

add length to LOCCTR

convertconstanttoobjectcode

}

ifobject codewillnotfitintocurrenttextrecord

{ writeTextrecordtoobjectprogram

initialize new text record

}

addobjectcodetoTextrecord read

next input line

}

}//end of while OPCODE ≠ ‘END’

writelastTextrecordtoobjectprogram

write End record to object program

end

Example:

The following figure shows the status upto this point. The symbol RREC is referred once at

location 2013, ENDFIL at 201C and WRREC at location 201F. None of these symbols are

defined. The figure shows that how the pending definitions along with their addresses are

included in the symbol table.

16

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

When the definition for the symbols RDREC and ENDFILL are encountered, the

reference list associated with the symbols is scanned and the address is inserted at proper

location. It is gioven in following figure:

2. Onepassassemblergeneratingobjectcodeforlaterexecution.

Inthis type ofone pass assembler, the generatedobject program is storedinexternal

storage (e.g.,files on disks). So random updates to operands target addresses(as in load-and-

go load-and- assemblers do) are not permitted.

For anysymbol involved in forward references, once the target address ofthe symbol

is identified, additional text records must be generated to overwrite those previously omitted

target addresses. Records must be loaded in the same order as they appear in the object

program. Actually, the handling of forward references are jointly done by the assembler and

the linking loader.

One pass assembler which generates object code unlike load and go assembler

operates in the following fashion:

 Iftheoperandcontainsanundefinedsymbol, use0astheaddressandwritetheText record

to the object program.

 Forwardreferencesareenteredintolistsas intheload-and-goassembler.

17

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

 Whenthedefinitionofasymbolisencountered,theassemblergeneratesanotherText record

with the correct operand address of each entry in the reference list.

 Whenloaded,the incorrect address0willbeupdatedbythe latterText record

containing the symbol definition.

Example:

 MULTIPASSASSEMBLER

 Foratwopassassembler,forwardreferencesinsymboldefinitionarenot allowed:

ALPHA EQU BETA

BETA EQU DELTA

DELTA RESW1

 Heretheproblem is, thesymbolBETAcannot beassigneda valuewhenit isencountered

during Pass 1 because DELTA has not yet been defined. Hence ALPHA cannot be

evaluated during Pass 2. So that the symbol definition must be completed in pass 1.

 The general solution for this type of forward references is to use a multi-pass assembler

that can make as many passes as are needed to process the definitions of symbols.

 It is not necessary for such an assembler to make more than 2 passes over the entire

program.

 The portions of the program that involve forward references in symbol definition are

saved during Pass 1.Additional passes through these stored definitions are made as the

assembly progresses. This process is followed by a normal Pass 2.

ImplementationofMultipassAssembler

18

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

 Foraforwardreferenceinsymboldefinition,westoreintheSYMTAB:

o Thesymbol name

o Thedefiningexpression

o Thenumberofundefinedsymbols inthedefiningexpression

 The undefined symbol (marked as *) associated with a list of symbols depend on this

undefined symbol.

 When a symbol is defined, we can recursively evaluate the symbol expressionsdepending

on the newly defined symbol.

 The portions of the program that involve forward references in symbol definition are

saved during Pass 1.Additional passes through these stored definitions are made as the

assembly progresses. This process is followed by a normal Pass 2.

Example:

 Considerthesymboltableentries fromPass1processingofthestatement.

HALFS2 EQU MAXLEN/2

 Since MAXLEN has not yet been defined, no value for HALFS2 can be computed.

The defining expression for HALFS2 is stored in the symbol table in place of its

value.

 Theentry&1indicatesthat1symbolinthedefiningexpressionundefined.

 SYMTABsimplycontainapointertothedefiningexpression.

 The symbolMAXLEN is also entered in the symboltable, withthe flag * identifying it

as undefined. Associated with this entry is a list of the symbols whose values depend

on MAXLEN.

19

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

Ifpossiblestudytheportiongivenbelow

