
1
J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

SYSTEM SOFTWARE

Module – I
Introduction: System software and machine architecture, traditional (CISC)

machines, RISC machines.

 Introduction

The subject introduces the design and implementation of system software. Software is

set of instructions or programs written to carry out certain task on digital computers. It is

classified into system software and application software. System software consists of a variety of

programs that support the operation of a computer. Application software focuses on an

application or problem to be solved. System software consists of a variety of programs that

support the operation of a computer. Examples for system software are Operating system,

compiler, assembler, macro processor, loader or linker, debugger, text editor, database

management systems (some of them) and, software engineering tools. These software’s make it

possible for the user to focus on an application or other problem to be solved, without needing

to know the details of how the machine works internally.

 System Software and Machine Architecture
One characteristic in which most system software differs from application software is

machine dependency.

System software – support operation and use of computer. Application software -
solution to a problem. Assembler translates mnemonic instructions into machine code. The

instruction formats, addressing modes etc., are of direct concern in assembler design. Similarly,

Compilers must generate machine language code, taking into account such hardware

characteristics as the number and type of registers and the machine instructions available.

Operating systems are directly concerned with the management of nearly all of the resources of

a computing system.

There are aspects of system software that do not directly depend upon the type of

computing system, general design and logic of an assembler, general design and logic of a

compiler and, code optimization techniques, which are independent of target machines.

Likewise, the process of linking together independently assembled subprograms does not

usually depend on the computer being used.

 The Simplified Instructional Computer (SIC)

Simplified Instructional Computer (SIC) is a hypothetical computer that

includes the hardware features most often found on real machines. There are two

versions of SIC, they are, standard model (SIC), and, extension version (SIC/XE)

(extra equipment or extra expensive).
1. SIC standard Model

2. SIC/XE(extra equipment or expensive)

Object programs for SIC can be properly executed on SIC/XE which is known as upward

compatibility.

2

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

SIC Machine Architecture/Components –

1. Memory –

 Memory is byte-addressable that is words are addressed by the location of their lowest-

numbered byte.

 There are 2^15 bytes in computer memory (1 byte = 8 bits)

3 consecutive byte = 1 word (24 bits = 1 word)

 2. Registers –

 There are 5 registers in SIC. Every register has an address associated with it known as

a registration number. The size of each register is 3 bytes. On basis of register size,

integer size is dependent.

I. A(Accumulator-0): It is used for mathematical operations.

II. X(Index Register-1): It is used for addressing.

III. L(Linkage Register-2): It stores the return address of the instruction in case of

subroutines.

IV. PC(Program Counter-8): It holds the address of the next instruction to be executed.

V. SW(Status Word-9): It contains a variety of information

 Status Word Register:

 mode bit refers to user mode(value=0) or supervising mode(value=1). It occupies 1 bit.

 state bit refers whether process is in running state(value=0) or idle state(value=1). 1 bit.

 id bit refers to process id(PID). It occupies 3 bits

 CC bit refers to condition code i.e. It tells whether the device is ready or not. It occupies 2

bits.

Mask bit refers to interrupt mask. It occupies 4 bits.

 X refers to unused bit. It also occupies 4 bits.

 ICode refers to interrupt code i.e. Interrupt Service Routine. It occupies the remaining bits.

3. Data Format –

 Integers are represented by 24 bits.

 Negative numbers are represented in 2’s complement.

 Characters are represented by 8 bit ASCII values.

 No floating-point representation is available.

4. Instruction Format –

All instructions in SIC have a 24-bit format.

3

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

 If x=0 it means direct addressing mode.

 If x=1 it means indexed addressing mode.

5. Instruction Set –

 Load And Store Instructions: To move or store data from accumulator to memory or vice-
versa. For example LDA, STA, LDX, STX, etc.

 Comparison Instructions: Used to compare data in memory by contents in accumulator. For
example COMP data.

 Arithmetic Instructions: Used to perform operations on accumulator and memory and store
results in the accumulator. For example ADD, SUB, MUL, DIV, etc.

 Conditional Jump: compare the contents of accumulator and memory and performs task

based on conditions. For example JLT, JEQ, JGT

 Subroutine Linkage: Instructions related to subroutines. For example JSUB, RSUB

6. Input and Output –

It is performed by transferring 1 byte at a time from or to the rightmost 8 bits of the

accumulator. Each device has an 8-bit unique code.

There are 3 I/O instructions:

 Test Device (TD) tests whether the device is ready or not. Condition code in Status Word

Register is used for this purpose. If cc is < then the device is ready otherwise the device is

busy.

 Read data(RD) reads a byte from the device and stores it in register A.

 Write data(WD) writes a byte from register A to the device.

 Here are some applications of SIC:

1. Computer Architecture education: The SIC is an excellent tool for teaching computer

architecture and organization, as it provides a simplified model of a computer system. By
studying the SIC’s architecture, students can learn about the basic components of a
computer system, such as the CPU, memory, and I/O devices.

2. Assembly language programming education: The SIC’s instruction set is simple and

easy to understand, making it a useful tool for teaching assembly language programming.
Students can write and execute assembly language programs on the SIC, learning about
the various instructions, addressing modes, and program flow control.

3. Compiler development: The SIC can be used as a platform for developing compilers for

high-level programming languages. Compiler developers can use the SIC’s instruction set
and memory organization as a reference for generating assembly language code from high-
level code.

4. Operating system development: The SIC’s simple architecture can be used as a basis for

teaching operating system development. Students can learn about the basic features of an
operating system, such as process management, memory management, and I/O
management, by implementing them on the SIC.

5. Emulation and simulation: The SIC can be used for emulation and simulation purposes,

allowing software developers to test their programs on a simulated computer system before
deploying them on real hardware.

4

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

VAX Architecture

VAX Architecture was designed to increase the compatibility by improving the hardware of the

earlier designed machines. As VAX architecture is an example of the CISC (Complex

Instruction Set Computers) therefore there are large and complicated instruction sets used in

the system.

1. Memory: VAX architecture consists of 8- bit bytes memory. Two consecutive bytes form a

word, four bytes form a longword, eight bytes form a quadword, sixteen bytes form an

octaword. All VAX programs operates on Virtual Address Space (2
32

 bytes). The Virtual

Address Space is divided into two spaces:

 System Space

 Process Space

2. Registers: VAX architecture have 16 general-purpose registers from R0 to R15. Some of

these registers have special name and use.

AP - Argument Pointer

FP - Frame Pointer

SP - Stack Pointer

PC - Program Counter

1. Data Formats:

 Integers are stored as Binary numbers in byte, word, longword, quadword or octaword.

 Characters are represented using 8-bit ASCII codes.

 Floating points are represented using four different floating-point formats of length ranging
from 4 to 16 bytes.

2. Instruction Formats: VAX machine architecture use a variable-length instruction format.

Each instruction consists of an operand code (1 or 2 bytes) followed by up to six operand
specifier, depending on the type of instruction.

3. Addressing Modes: VAX architecture use a large number of addressing modes. There are
number of modes available such as register mode, register deferred mode, autoincrement
and autodecrement mode. There are also base relative addressing modes, with
displacement fields of different lengths. Program counter relative mode is also used to deal
with PC register.

4. Instruction Set: In VAX systems instruction mnemonics are formed by combining following

elements:

 Prefix: A Prefix specifies the type of operation.

 Suffix: A Suffix specifies the data type of the operands.

 Modifier: A modifier specifies the number of operand involved.
5. Input and Output: I/O device controller are used to implement I/O on VAX architecture.

Each controller has a set of control/status. The portion of the space into which the device
controller register are mapped is called I/O space.

5

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

Introduction of Assembler

Assembler is a program for converting instructions written in low-level assembly code

into relocatable machine code and generating along information for the loader.

It generates instructions by evaluating the mnemonics (symbols) in operation field and

find the value of symbol and literals to produce machine code. Now, if assembler do all this

work in one scan then it is called single pass assembler, otherwise if it does in multiple scans

then called multiple pass assembler. Here assembler divide these tasks in two passes:

 Pass-1:

1. Define symbols and literals and remember them in symbol table and literal table
respectively.

2. Keep track of location counter
3. Process pseudo-operations

 Pass-2:

1. Generate object code by converting symbolic op-code into respective numeric op-code
2. Generate data for literals and look for values of symbols

Firstly, We will take a small assembly language program to understand the working in their
respective passes. Assembly language statement format:

[Label] [Opcode] [operand]

Example: M ADD R1, ='3'
where, M - Label; ADD - symbolic opcode;
R1 - symbolic register operand; (='3') - Literal

Assembly Program:
Label Op-code operand LC value(Location counter)
JOHN START 200
 MOVER R1, ='3' 200
 MOVEM R1, X 201
L1 MOVER R2, ='2' 202
 LTORG 203
X DS 1 204
 END 205
Let’s take a look on how this program is working:

1. START: This instruction starts the execution of program from location 200 and label with

START provides name for the program.(JOHN is name for program)

2. MOVER: It moves the content of literal(=’3′) into register operand R1.

3. MOVEM: It moves the content of register into memory operand(X).

4. MOVER: It again moves the content of literal(=’2′) into register operand R2 and its label is

specified as L1.

5. LTORG: It assigns address to literals(current LC value).

6. DS(Data Space): It assigns a data space of 1 to Symbol X.

6

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

7. END: It finishes the program execution.

Working of Pass-1: Define Symbol and literal table with their addresses.

Note: Literal address is specified by LTORG or END.

Step-1: START 200 (here no symbol or literal is found so both table would be empty)

Step-2: MOVER R1, =’3′ 200 (=’3′ is a literal so literal table is made)

Literal Address

=’3′ – – –

Step-3: MOVEM R1, X 201

X is a symbol referred prior to its declaration so it is stored in symbol table with blank address

field.

Symbol Address

X – – –

Step-4: L1 MOVER R2, =’2′ 202
L1 is a label and =’2′ is a literal so store them in respective tables

Symbol Address

X – – –

L1 202

Literal Address

=’3′ – – –

=’2′ – – –

Step-5: LTORG 203

Assign address to first literal specified by LC value, i.e., 203

Literal Address

=’3′ 203

=’2′ – – –

Step-6: X DS 1 204

It is a data declaration statement i.e X is assigned data space of 1. But X is a symbol which

was referred earlier in step 3 and defined in step 6.This condition is called Forward Reference

Problem where variable is referred prior to its declaration and can be solved by back-patching.

So now assembler will assign X the address specified by LC value of current step.

Symbol Address

X 204

L1 202

Step-7: END 205

Program finishes execution and remaining literal will get address specified by LC value of END
instruction. Here is the complete symbol and literal table made by pass 1 of assembler.

Symbol Address

X 204

L1 202

7

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

Literal Address

=’3′ 203

=’2′ 205

Now tables generated by pass 1 along with their LC value will go to pass-2 of assembler for
further processing of pseudo-opcodes and machine op-codes.

Working of Pass-2:

Pass-2 of assembler generates machine code by converting symbolic machine-opcodes into
their respective bit configuration(machine understandable form). It stores all machine-opcodes
in MOT table (op-code table) with symbolic code, their length and their bit configuration. It will
also process pseudo-ops and will store them in POT table(pseudo-op table).
Various Data bases required by pass-2:

1. MOT table(machine opcode table)

2. POT table(pseudo opcode table)

3. Base table(storing value of base register)

4. LC (location counter)

 Different Architectures

The following section introduces the architectures of CISC and RISC

machines. CISC machines are called traditional machines. In addition to these we

have recent RISC machines. Different machines belonging to both of these

architectures are compared with respect to their Memory, Registers, Data Formats,

Instruction Formats, Addressing Modes, Instruction Set, Input and Output

 CISC machines

Traditional (CISC) Machines, are nothing but, Complex Instruction Set
Computers, has relatively large and complex instruction set, different instruction

formats, different lengths, different addressing modes, and implementation of

hardware for these computers is complex. VAX and Intel x86 processors are

examples for this type of architecture.

 VAX Architecture

Memory - The VAX memory consists of 8-bit bytes. All addresses used are byte

addresses. Two consecutive bytes form a word, Four bytes form a longword, eight

bytes form a quadword, sixteen bytes form a octaword. All VAX programs operate in

a virtual address space of 232 bytes , One half is called system space, other half

process space.

Registers – There are 16 general purpose registers (GPRs) , 32 bits each, named as

R0 to R15, PC (R15), SP (R14), Frame Pointer FP (R13), Argument Pointer

AP (R12) ,Others available for general use. There is a Process status longword (PSL)

– for flags.

Data Formats - Integers are stored as binary numbers in byte, word, longword,

quadword, octaword. 2’s complement notation is used for storing negative numbers.

Characters are stored as 8-bit ASCII codes. Four different floating-point data formats

are also available.

8

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

Instruction Formats - VAX architecture uses variable-length instruction formats –
op code 1 or 2 bytes, maximum of 6 operand specifiers depending on type of

instruction. Tabak – Advanced Microprocessors (2nd edition) McGraw-Hill, 1995,

gives more information.

Addressing Modes - VAX provides a large number of addressing modes. They are
Register mode, register deferred mode, autoincrement, autodecrement, base relative,

program-counter relative, indexed, indirect, and immediate.

Instruction Set – Instructions are symmetric with respect to data type - Uses prefix –

type of operation, suffix – type of operands, a modifier – number of operands. For

example, ADDW2 - add, word length, 2 operands, MULL3 - multiply, longwords, 3

operands CVTCL - conversion from word to longword. VAX also provides

instructions to load and store multiple registers.

Input and Output - Uses I/O device controllers. Device control registers are mapped

to separate I/O space. Software routines and memory management routines are used

for input/output operations.

 Pentium Pro Architecture

Introduced by Intel in 1995.

Memory - consists of 8-bit bytes, all addresses used are byte addresses. Two

consecutive bytes form a word, four bytes form a double word (dword). Viewed as

collection of segments, and, address = segment number + offset. There are code, data,

stack , extra segments.

Registers – There are 32-bit, eight GPRs, namely EAX, EBX, ECX, EDX, ESI, EDI,

EBP, ESP. EAX, EBX, ECX, EDX – are used for data manipulation, other four are

used to hold addresses. EIP – 32-bit contains pointer to next instruction to be

executed. FLAGS is an 32 - bit flag register. CS, SS, DS, ES, FS, GS are the six 16-

bit segment registers.

Data Formats - Integers are stored as 8, 16, or 32 bit binary numbers, 2’s

complement for negative numbers, BCD is also used in the form of unpacked BCD,

packed BCD. There are three floating point data formats, they are single, double, and

extended- precision. Characters are stored as one per byte – ASCII codes.

Instruction Formats – Instructions uses prefixes to specify repetition count, segment

register, following prefix (if present), an opcode (1 or 2 bytes), then number of bytes

to specify operands, addressing modes. Instruction formats varies in length from 1

byte to 10 bytes or more. Opcode is always present in every instruction

Addressing Modes - A large number of addressing modes are available. They are
immediate mode, register mode, direct mode, and relative mode. Use of base register,

index register with displacement is also possible.

Instruction Set – This architecture has a large and complex instruction set,

approximately 400 different machine instructions. Each instruction may have one, two

or three operands. For example Register-to-register, register-to-memory, memory-to-

memory, string manipulation, etc…are the some the instructions.

9

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

Input and Output - Input is from an I/O port into register EAX. Output is from EAX
to an I/O port

RISC Machines

RISC means Reduced Instruction Set Computers. These machines are

intended to simplify the design of processors. They have Greater reliability, faster

execution and less expensive processors. And also they have standard and fixed

instruction length. Number of machine instructions, instruction formats, and

addressing modes relatively small. UltraSPARC Architecture and Cray T3E

Architecture are examples of RISC machines.

Ultra SPARC Architecture

Introduced by Sun Microsystems. SPARC – Scalable Processor ARChitecture.

SPARC, SuperSPARC, UltraSPARC are upward compatible machines and share the

same basic structure.

Memory - Consists of 8-bit bytes, all addresses used are byte addresses. Two

consecutive bytes form a halfword, four bytes form a word , eight bytes form a double

word. Uses virtual address space of 2
64

 bytes, divided into pages.

Registers - More than 100 GPRs, with 64 bits length each called Register file. There

are 64 double precision floating-point registers, in a special floating-point unit (FPU).

In addition to these, it contains PC, condition code registers, and control registers.

Data Formats - Integers are stored as 8, 16, 32 or 64 bit binary numbers. Signed,
unsigned for integers and 2’s complement for negative numbers. Supports both big-

endian and little-endian byte orderings. Floating-point data formats – single, double

and quad-precision are available. Characters are stored as 8-bit ASCII value.

Instruction Formats - 32-bits long, three basic instruction formats, first two bits

identify the format. Format 1 used for call instruction. Format 2 used for branch

instructions. Format 3 used for load, store and for arithmetic operations.

Addressing Modes - This architecture supports immediate mode, register-direct

mode,PC-relative, Register indirect with displacement, and Register indirect indexed.

Instruction Set – It has fewer than 100 machine instructions. The only instructions that access

memory are loads and stores. All other instructions are register-to-register operations.

Instruction execution is pipelined – this results in faster execution, and hence speed increases.

Input and Output - Communication through I/O devices is accomplished through memory. A

range of memory locations is logically replaced by device registers. When a load or store

instruction refers to this device register area of memory, the corresponding device is activated.

There are no special I/O instructions.

 Cray T3E Architecture
Announced by Cray Research Inc., at the end of 1995 and is a massively parallel

processing (MPP) system, contains a large number of processing elements (PEs), arranged in a

10
J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, KARAIKAL-609 605.

three-dimensional network. Each PE consists of a DEC Alpha EV5 RISC processor, and local

memory.

Memory - Each PE in T3E has its own local memory with a capacity of from 64 megabytes to 2

gigabytes, consists of 8-bit bytes, all addresses used are byte addresses. Two consecutive bytes

form a word, four bytes form a longword, eight bytes form a quadword.

Registers – There are 32 general purpose registers(GPRs), with 64 bits length each called R0

through R31, contains value zero always. In addition to these, it has 32 floating-point registers,

64 bits long, and 64-bit PC, status , and control registers.

Data Formats - Integers are stored as long and quadword binary numbers. 2’s complement
notation for negative numbers. Supports only little-endian byte orderings. Two different

floating-point data formats – VAX and IEEE standard. Characters stored as 8-bit ASCII value.

Instruction Formats - 32-bits long, five basic instruction formats. First six bits always identify
the opcode.

Addressing Modes - This architecture supports, immediate mode, register-direct mode, PC-

relative, and Register indirect with displacement.

Instruction Set - Has approximately 130 machine instructions. There are no byte or word load

and store instructions. Smith and Weiss – “PowerPC 601 and Alpha 21064: A Tale of TWO

RISCs “ – Gives more information.

Input and Output - Communication through I/O devices is accomplished through multiple
ports and I/O channels. Channels are integrated into the network that interconnects the

processing elements. All channels are accessible and controllable from all PEs.

