SQA components in the
project life cycle

The project life cycle encompasses two stages: the development life cycle stage
and the operation-maintenance stage. Most of the SQA components to be
reviewed in Part IIT support at least one of the phases comprising these stages.

Development life cycle SQA components are meant to detect design
and programming errors in the design and programming (coding) phases.
The components applied in this stage belong to one of the following four
sub-classes:

m Formal design reviews

m Peer reviews

B Expert opinions

m Software testing.

Operation—maintenance stage SQA components include special components
to be applied for corrective maintenance but also development life cycle SQA
components that can also be used for functionality improvement mainte-
nance tasks.

An additional sub-class of SQA components, other than those listed
above, deals with assuring the quality of project parts performed by subcon-
tractors and other external participants during the project life cycle. The
importance of this sub-class stems from the high risks associated with func-
tional failures and the failure to keep to the project timetable. Both types of
risk are directly related to the difficulty of controlling the external partici-
pants’ performance.

The project characteristics determine which SQA components enter the
project life cycle at any particular point. To guarantee their effectiveness, the
choice of components is decided upon prior to the project’s initiation.

The first chapter of this part, Chapter 7, is dedicated to a general dis-
cussion of the integration of software quality assurance components within
each phase of the project’s life cycle. A model for assessing the effectiveness
and costs of integration is also presented in this chapter.

Chapter 8 discusses the review components of the design phase: formal
design reviews, peer review and expert opinions.

Chapters 9 and 10 are dedicated to software testing issues, with
Chapter 9 focusing on testing strategies and Chapter 10 on software testing

120

31242 9411 199f04d 3y) ul Susuodwod YOS || Med ‘

implementation. Among the implementation issues discussed are manual and
automated testing.

Chapter 11 deals with SQA components appropriate to the opera-
tion—maintenance stage. Although functionality improvement and adaptive
maintenance tasks employ primarily development life cycle SQA components
(see Chapters 8-10), corrective maintenance, the subject of this chapter, has
distinctive requirements and special SQA components.

Chapter 12, the final chapter in this part, explores the SQA issues raised
by the participation of external participants in a project.

Integrating quality activities in
the project life cycle

7.1 Classic and other software development methodologies 122
7.1.1 The software development life cycle (SDLC) model 123
7.1.2 The prototyping model 125
7.1.3 The spiral model 127
7.1.4 The object-oriented model 129
7.2 Factors affecting intensity of quality assurance activities in
the development process 131
7.3 \Verification, validation and qualification 133
7.4 A model for SQA defect removal effectiveness and cost 135
7.4.1 The data 135
7.4.2 The model 137
Summary 143
Selected bibliography 145
Review questions 146
Topics for discussion 147

The first part of this chapter is dedicated to the various software develop-
ment models in current use. The remaining sections deal with the objectives
of the software quality assurance activities conducted throughout the project
life cycle, their integration in the development process, and the factors con-
sidered before applying them.

One might inquire why not begin with SQA activities and omit the dis-
cussion of the software development models? This question is not simply
rhetorical. Software development models provide a coordinated set of con-
cepts and methodologies needed to implement software development. As
such, they include definitions of the main activities needed for development,
the appropriate sequence for their performance, and their milestones. By
deciding what models are to be applied, the project leader determines how
the project will be carried out. Most quality assurance activities take place in
conjunction with the completion or examination of activity milestones,
which require review of the product development activities previously

yanti
Highlight

-
N
N

91242 341) 193f04d ay3 ul sanAde Ayjenb SuneiSajul £ ‘

completed. Therefore, SQA professionals should be acquainted with the var-
ious software engineering models in order to be able to prepare a quality
plan that is properly integrated into the project plan.

The rest of the first part of the chapter deals with the factors affecting
the choice of software quality activities to be integrated in the development
process. The following four chapters (Chapters 8 to 11) deal with the spe-
cific software quality methodologies to be applied at each phase of the
development stage and in the operation—-maintenance stage.

The second part of the chapter is dedicated to a model for assessing a
plan for SQA defect-removal effectiveness and cost. The model, a multiple
filtering model, is based on data acquired from a survey of defect origins,
percentages of defect removal achieved by various quality assurance activi-
ties, and the defect-removal costs incurred at the various development
phases. The model enables quantitative comparison of quality assurance
policies as realized in quality assurance plans.

After completing this chapter, you will be able to:

m Describe the various software development models and discuss the dif-
ferences between them.

m Explain the considerations affecting intensity of applying quality assur-
ance activities.

m Explain the different aspects of verification, validation and qualification
associated with quality assurance activities.

B Describe the model for the SQA plan’s defect-removal effectiveness
and cost.

m Explain possible uses for the model.

7.1 Classic and other software development methodologies
Four models of the software development process are discussed in this section:

The Software Development Life Cycle (SDLC) model
The prototyping model

The spiral model

The object-oriented model.

The models presented here are not merely alternatives; rather, they represent
complementary view of software development or refer to different develop-
ment contexts.

The Software Development Life Cycle model (the SDLC model) is the
classic model (still applicable today); it provides the most comprehensive
description of the process available. The model displays the major building
blocks for the entire development process, described as a linear sequence. In the
initial phases of the software development process, product design documents

yanti
Highlight

yanti
Highlight

yanti
Highlight

are prepared, with the first version of the computer program completed
and presented for evaluation only at quite a late stage of the process. The
SDLC model can serve as a framework within which the other models are
presented.

The prototyping model is based on replacement of one or more SDLC
model phases by an evolutionary process, where software prototypes are
used for communication between the developer and the users and cus-
tomers. Prototypes are submitted to user representatives for evaluation. The
developer then continues development of a more advanced prototype,
which is also submitted for evaluation. This evolutionary process continues
till the software project is completed or the software prototype has reached
the desired phase. In this case, the rest of the development process can be
carried out according to a different methodology, for example the classic
SDLC model.

The spiral model provides a methodology for ensuring effective per-
formance at each of the SDLC model phases. It involves an iterative process
that integrates customer comments and change requirements, risk analysis
and resolution, and software system planning and engineering activities. One
or more iterations of the spiral model may be required to complete each of
the project’s SDLC phases. The associated engineering tasks may be per-
formed according to any one model or a combination of them.

The object-oriented model incorporates large-scale reuse of software by
integrating reusable modules into new software systems. In cases where no
reusable software modules (termed objects or components) are available, the
developer may perform a prototyping or SDLC process to complete the
newly developed software system.

All four models will be presented in detail in the next four sections.
Detailed discussions of the respective methodologies are available in the soft-

ware engineering and system analysis literature, particularly Pressman
(2000) and Kendall and Kendall (1999).

7.1.1 The software development life cycle (SDLC) model

The classic Software Development Life Cycle (SDLC) model is a linear
sequential model that begins with requirements definition and ends with reg-
ular system operation and maintenance. The most common illustration of
the SDLC model is the waterfall model, shown in Figure 7.1.

The model shown in Figure 7.1 presents a seven-phase process, as follows:

B Requirements definition. For the functionality of the software system to
be developed, the customers must define their requirements. In many
cases the software system is part of a larger system. Information about
the other parts of the expanded system helps establish cooperation
between the teams and develop component interfaces.

®m Analysis. The main effort here is to analyze the requirements’ implica-
tions to form the initial software system model.

salSojopoylaw Jusawdo]aAap 21eMYOS JaYlo pue disse)) 1°/ ‘ §,

yanti
Highlight

yanti
Highlight

yanti
Highlight

yanti
Highlight

yanti
Highlight

yanti
Highlight

yanti
Highlight

-
N
~

91242 341) 193f04d ay3 ul sanAde Ayjenb SuneiSajul £ ‘

REQUIREMENTS
DEFINITION

3

Y

ANALYSIS

N y

DESIGN

N y

CODING

\ Y

SYSTEM TESTS

A

Y

INSTALLATION
AND CONVERSION

Y

OPERATION AND
MAINTENANCE

< [
<

Figure 7.1: The waterfall model
Source: After Boehm (1981) and Royce (1970) (© 1970 IEEE)

m Design. This stage involves the detailed definition of the outputs, inputs
and processing procedures, including data structures and databases, soft-
ware structure, etc.

m Coding. In this phase, the design is translated into a code. Coding
involves quality assurance activities such as inspection, unit tests and
Integration tests.

B System tests. System tests are performed once the coding phase is com-
pleted. The main goal of testing is to uncover as many software errors as
possible so as to achieve an acceptable level of software quality once cor-
rections have been completed. System tests are carried out by the
software developer before the software is supplied to the customer. In
many cases the customer performs independent software tests (“accept-
ance tests”) to assure him or herself that the developer has fulfilled all the
commitments and that no unanticipated or faulty software reactions are
anticipated. It is quite common for a customer to ask the developer to

yanti
Highlight

yanti
Highlight

yanti
Highlight

join him or her in performing joint system tests, a procedure that saves
the time and resources required for separate acceptance tests.

m Installation and conversion. After the software system is approved, the
system is installed to serve as firmware, that is, as part of the information
system that represents a major component of the expanded system. If the
new information system is to replace an existing system, a software con-
version process has to be initiated to make sure that the organization’s
activities continue uninterrupted during the conversion phase.

® Regular operation and maintenance. Regular software operation begins
once installation and conversion have been completed. Throughout the
regular operation period, which usually lasts for several years or until a
new software generation appears on the scene, maintenance is needed.
Maintenance incorporates three types of services: corrective — repairing
software faults identified by the user during operation; adaptive — using
the existing software features to fulfill new requirements; and perfective
- adding new minor features to improve software performance.

The number of phases can vary according to the characteristics of the proj-
ect. In complex, large-scale models, some phases are split, causing their
number to grow to eight, nine or more. In smaller projects, some phases may
be merged, reducing the number of phases to six, five or even four phases.

At the end of each phase, the outputs are examined and evaluated by the
developer and, in many cases, by the customer as well. Possible outcomes of
the review and evaluation include:

m Approval of the phase outputs and progress on to the next phase, or
m Demands to correct, redo or change parts of the last phase; in certain
cases, a return to earlier phases is required.

The width of the lines connecting the rectangular boxes in the illustration
reflects the relative probabilities of the different outcomes. Thus, the most
commonly performed process is a linear sequence (no or only minor correc-
tions). We should note, however, that the model emphasizes direct
development activities and does not indicate customer stakes in the develop-
ment process.

The classic waterfall model was suggested by Royce (1970) and later
presented in its commonly known form by Boehm (1981). It provides the
foundations for the majority of the major software quality assurance stan-
dards employed, such as IEEE Std 1012 (IEEE, 1998) and IEEE Std 12207
(IEEE, 1996, 1997a, 1997b), to mention just two.

7.1.2 The prototyping model

The prototyping methodology makes use of (a) developments in information
technology, namely, advanced application generators that allow for fast
and easy development of software prototypes, combined with (b) active

salSojopoylaw Jusawdo]aAap 21eMYOS JaYlo pue disse)) 1°/ ‘ E

yanti
Highlight

yanti
Highlight

-
N
(o)}

91242 341) 193f04d ay3 ul sanAde Ayjenb SuneiSajul £ ‘

participation in the development process by customers and users capable of
examining and evaluating prototypes.

When applying the prototyping methodology, future users of the system
are required to comment on the various versions of the software prototypes
prepared by the developers. In response to customer and user comments, the
developers correct the prototype and add parts to the system on the way to
presenting the next generation of the software for user evaluation. This
process is repeated till the prototyping goal is achieved or the software sys-
tem is completed. A typical application of the prototyping methodology is
shown in Figure 7.2.

REQUIREMENTS
DETERMINATION
BY CUSTOMER

!

PROTOTYPE
DESIGN

!

PROTOTYPE
IMPLEMENTATION

!

A

PROTOTYPE
EVALUATION
BY CUSTOMER

DEMANDS FOR
CORRECTIONS, CHANGES
AND ADDITIONS

REQUIREMENTS
FULFILLED ?

SYSTEM TESTS
AND ACCEPTANCE
TESTS

!

SYSTEM
CONVERSION

Y

SYSTEM OPERATION
AND MAINTENANCE

Figure 7.2: The prototyping model

yanti
Highlight

Prototyping can be applied in combination with other methodologies or as a
“stand alone” methodology. In other words, the extent of prototyping can
vary, from replacement of one SDLC (or other methodology) phase up to
complete prototyping of the entire software system.

Prototyping as a software development methodology has been found to
be efficient and effective mainly for small- to medium-sized software devel-
opment projects. The main advantages and deficiencies of prototyping over
the complete SDLC methodology, summarized in Frame 7.1, result from the
user’s intense involvement in the software development process. Such
involvement facilitates the user’s understanding of the system while it limits
the developer’s freedom to introduce innovative changes in the system.

Prototyping versus SDLC methodology — advantages and
disadvantages (mainly for small to medium-sized projects)

Advantages of prototyping:

M Shorter development process

m Substantial savings of development resources (man-days)

m Better fit to customer requirements and reduced risk of project failure
[

Easier and faster user comprehension of the new system

Disadvantages of prototyping:
m Diminished flexibility and adaptability to changes and additions

B Reduced preparation for unexpected instances of failure

7.1.3 The spiral model

The spiral model, as revised by Boehm (1988, 1998), offers an improved
methodology for overseeing large and more complex development projects
displaying higher prospects for failure, typical of many projects begun in the
last two decades. It combines an iterative model that introduces and empha-
sizes risk analysis and customer participation into the major elements of
SDLC and prototyping methodologies.

According to the spiral model, shown in Figure 7.3, software develop-
ment is perceived to be an iterative process; at each iteration, the following
activities are performed:

m Planning

®m Risk analysis and resolution

m Engineering activities according to the stage of the project: design, cod-
ing, testing, installation and release

m Customer evaluation, including comments, changes and additional
requirements, etc.

salSojopoyaw Jusawdo]aAap 21eMOS JaYlo pue disse)) 1°/ ‘ §

yanti
Highlight

yanti
Highlight

yanti
Highlight

-
N
(0]

91242 3411 199f04d ay) uil saniAnde Ayjenb SunjeiSayul £

Planning Risk analysis and resolution
Analysis of customer’s Risk evaluation
requirements and of customer’s
project planning requirements
Planning

basedon -
customers "
comments s,

Risk evaluation
,- of customer’s

“.- comments

-* and changes

________ Initial
prototype

) ~._Advanced
prototype

Customer’s evaluation
comments and change

requirements

Detailed design,
coding, testing
and release

Evaluation by customer Engineering

Figure 7.3: The spiral model (Boehm, 1988)
Source: After Boehm (1988) (© 1988 IEEE)

An advanced spiral model, the Win-Win Spiral model (Boehm, 1998),
enhances the Spiral model (Boehm, 1988) still further. The advanced model
places extra emphasis on communication and negotiation between the cus-
tomer and the developer. The model’s name refers to the fact that by using this
process, the customer “wins” in the form of improved chances to receive the
system most satisfying to his needs, and the developer “wins” in the form of
improved chances to stay within the budget and complete the project by the
agreed date. This is achieved by increasing emphasis on customer participation
and on engineering activities. These revisions in the development process are
shown graphically by two sections of the spiral dedicated to customer partici-
pation: the first deals with customer evaluation and the second with customer
comments and change requirements. Engineering activity is likewise shown in
two sections of the spiral: the first is dedicated to design and the second to con-
struction. By evaluating project progress at the end of each of these sections,
the developer is able to better control the entire development process.

Accordingly, in the advanced spiral model, shown in Figure 7.4, the fol-
lowing six activities are carried out in each iteration:

yanti
Highlight

Customer’s Planning Requirements Planning Risk analysis
comments based on analysis and
and change customer’s project planning

requirements

comments

Risk evaluation
,- of customer’s

,~° requirements
Customer’s o q

comments s,
and change “~. .,

~ ~
~

requirements s, .
A

Risk evaluation
.- of customer’s

.- comments

-~ and changes

Defining
CUEITMETS ====jj===2=2/l====
requirements

~~~~~ Initial
-~ prototype
design

evaluation =~~~ Advanced
> prototype

. design

7/ Constructing

. advanced \ *«_Detailed

’ rototype ¥ design

Constructing protolyp _ System g

Customer’s initial implementation

evaluation prototype Construction Design

Figure 7.4: The advanced spiral model (Boehm, 1998)
Source: After Boehm (1988) (© 1988 IEEE)

Customer’s specification of requirements, comments and change demands
Developer’s planning activities

Developer’s risk analysis and resolution

Developer’s design activities

Developer’s construction activities pertaining to coding, testing, installa-
tion and release

Customer’s evaluation.

7.1.4 The object-oriented model

The object-oriented model differs from the other models by its intensive
reuse of software components. This methodology is characterized by its easy
integration of existing software modules (called objects or components) into
newly developed software systems. A software component library serves this
purpose by supplying software components for reuse.

So, according to the object-oriented model as shown in Figure 7.5, the
development process begins with a sequence of object-oriented analyses and
designs. The design phase is followed by acquisition of suitable components

129

salSojopoyaw Jusawdo]aAap 21eMOS JaYlo pue disse)) 1°/


yanti
Highlight


-
w
o

91242 341) 193f04d ay3 ul sanAde Ayjenb SuneiSajul £

from the reusable software library, when available. “Regular” development
is carried out otherwise. Copies of newly developed software components
are then “stocked” in the software library for future reuse. It is expected that
the growing software component stocks in the reusable software library will
allow substantial and increasing reuse of software, a trend that will allow
taking greater advantage of resources as follows:

m Economy — The cost of integrating a reusable software component is
much lower than the cost of developing new components.
B Improved quality — Used software components are expected to contain

considerably fewer defects than newly developed software components
due to detection of faults by former users.

Requirements
definition

!

Object-oriented
analysis

!

Object-oriented
A design

!

Reusability survey of

Reusable

Not components library components B
library Addition
accepted to library
Component
Availability not available Requirements
el definition
in library I
Analysis and
Reusable e
component is |
available X
Coding
Customer’s
evaluation I
System » Component
construction | tests
Installation * Development of a
and conversion System new component
¢ tests

Operation and
maintenance

Figure 7.5: The object-oriented model


yanti
Highlight

yanti
Highlight

yanti
Highlight


m Shorter development time — The integration of reusable software compo-
nents reduces scheduling pressures.

Thus, the advantages of the object-oriented methodology over other
methodologies will grow as the storage of reusable software grows.

7.2 Factors affecting intensity of quality assurance
activities in the development process

Project life cycle quality assurance activities are process oriented, in other
words, linked to completion of a project phase, accomplishment of a project
milestone, and so forth. The quality assurance activities will be integrated into
the development plan that implements one or more software development
models — the waterfall, prototyping, spiral, object-oriented or other models.
Quality assurance planners for a project are required to determine:

m  The list of quality assurance activities needed for a project.
m For each quality assurance activity:
— Timing
— Type of quality assurance activity to be applied
— Who performs the activity and the resources required. It should be
noted that various bodies may participate in the performance of qual-
ity assurance activities: development team and department staff

members together with independent bodies such as external quality
assurance team members or consultants

— Resources required for removal of defects and introduction of changes.

In some development plans, one finds quality assurance activities spread
throughout the process, but without any time allocated for their performance
or for the subsequent removal of defects. Someone probably assumed that a
late afternoon meeting would be sufficient for performing the quality
assurance activities and the corrections to be made. As nothing is achieved
without time, the almost guaranteed result is delay, caused by the
“unexpectedly” long duration of the quality assurance process. Hence, the
time allocated for quality assurance activities and the defects correction work
that follow should be examined.

The intensity of the quality assurance activities planned, indicated by the
number of required activities, is affected by project and team factors, as
shown in Frame 7.2.

Sa1lIAI0R doueInsse Ajjenb jo Ajisuajul Suidayje sioldeq 7°/ ‘ ‘:“


yanti
Highlight

yanti
Highlight


-
w
N

91242 341) 193f04d ay3 ul sanAde Ayjenb SuneiSajul £ ‘

Factors affecting the required intensity of quality

assurance activities

Project factors:

Magnitude of the project
Technical complexity and difficulty
Extent of reusable software components

Severity of failure outcomes if the project fails

Team factors:

Professional qualification of the team members
Team acquaintance with the project and its experience in the area
Availability of staff members who can professionally support the team

Familiarity with the team members, in other words the percentage of new
staff members in the team

The following two examples can illustrate how these factors can influ-

ence quality assurance activities.

Example 1

A software development team has planned the quality assurance activities for
its new consumer club project. The current project contract, signed with a
leading furniture store, is the team’s 11th consumer club project dealing in
the last three years. The team estimates that about seven man-months need
to be invested by the two team members assigned to the project, whose dura-
tion is estimated at four months. It is estimated that a reusable components
library can supply 90% of the project software.

Three quality assurance activities were planned by the project leader.

The quality assurance activities and their duration are listed in Table 7.1.

Table 7.1: Duration of quality assurance activities — the consumer club example

No.

Quality assurance activity Duration of Duration of
quality assurance corrections and
activity (days) changes (days)
Design review of requirements definition 0.5 1
Inspection of the design 1 1

System test of completed software package 4 2



yanti
Highlight


The main considerations affecting this plan are:

Degree of team acquaintance with the subject
High percentage of software reuse

Size of the project (in this case, medium)
Severity of failure results if the project fails.

Example 2
The real-time software development unit of a hospital’s information systems
department has been assigned to develop an advanced patient monitoring
system. The new monitoring unit is to combine of patient’s room unit with
a control unit. The patient’s room unit is meant to interface with several
types of medical equipment, supplied by different manufacturers, which
measure various indicators of the patient’s condition. A sophisticated control
unit will be placed at the nurses’ station, with data to be communicated to
cellular units carried by doctors.

The project leader estimates that 14 months will be required to complete
the system; a team of five will be needed, with an investment of a total of 40
man-months. She estimates that only 15% of the components can be
obtained from the reusable component library. The SDLC methodology was
chosen to integrate application of two prototypes of the patient’s room unit
and two prototypes of the control unit for the purpose of improving com-
munication with the users and enhancing feedback of comments at the
analysis and design phases.

The main considerations affecting this plan are:

m High complexity and difficulty of the system

m Low percentage of reusable software available

m Large size of the project

m High severity of failure outcomes if the project fails.

The quality assurance activities and their duration, as defined by the project
leader, are listed in Table 7.2.

7.3 Verification, validation and qualification

Three aspects of quality assurance of the software product (a report, code, etc.)
are examined under the rubrics of verification, validation and qualification.
IEEE Std 610.12-1990 (IEEE, 1990) defines these aspects as follows:

m  “Verification — The process of evaluating a system or component to deter-
mine whether the products of a given development phase satisfy the
conditions imposed at the start of that phase.”

uorieslyijenb pue uonepijea ‘uonedIYLIBA €7/ ‘ g


yanti
Highlight


134

91242 3J1) 199f04d ay3 ul saniAnde Ayjenb SuneiSayul / ‘

Table 7.2: Duration of quality assurance activities — the patient monitoring system example

No. Quality assurance activity Duration of Duration of
quality assurance  corrections and
activity (days) changes (days)

1 Design review of requirements definition 2 1

2 Design review of analysis of patient’s room unit 2 2

3 Design review of analysis of control unit 1 2

4 Design review of preliminary design 1 1

5 Inspection of design of patient’s room unit 1 2

6 Inspection of design of control unit 1 3

7 Design review of prototype of patient’s room unit 1 1

8 Design review of prototype of control unit 1 1

9 Inspection of detailed design for each software 3 3
interface component

10  Design review of test plans for patient’s room 3 1
unit and control unit

11 Unit tests of software code for each interface 4 2
module of patient’s room unit

12 Integration test of software code of patient’s 3 3
room unit

13 Integration test of software code of control unit 2 3

14  System test of completed software system 10 5

15 Design review of user’s manual 3 2

m  “Validation — The process of evaluating a system or component during or
at the end of the development process to determine whether it satisfies
specified requirements.”

B “Qualification — The process used to determine whether a system or com-
ponent is suitable for operational use.”

According to the IEEE definitions, verification examines the consistency of
the products being developed with products developed in previous phases.
When doing so, the examiner follows the development process and assumes
that all the former development phases have been completed correctly,
whether as originally planned or after removal of all the discovered defects.
This assumption forces the examiner to disregard deviations from the cus-
tomer’s original requirements that might have been introduced during the
development process.

Validation represents the customer’s interest by examining the extent of
compliance to his or her original requirements. Comprehensive validation
reviews tend to improve customer satisfaction from the system.

Qualification focuses on operational aspects, where maintenance is the
main issue. A software component that has been developed and documented


yanti
Highlight


according to professional standards and style and structure convention pro-
cedures is expected to be much easier to maintain than one that provides
marvelous coding improvisations yet does not follow known coding style
procedures and so forth.

Planners are required to determine which of these aspects should be
examined in each quality assurance activity.

7.4 A model for SQA defect removal effectiveness
and cost

The model deals with two quantitative aspects of an SQA plan consisting of
several defect detection activities:

(1) The plan’s total effectiveness in removing project defects.

(2) The total costs of removal of project defects.

The plan itself is to be integrated within a project’s development process.

7.4.1 The data

The application of the model is based on three types of data, described under
the following headings.

Defect origin distribution

Defect origins (the phase in which defects were introduced) are distributed
throughout the development process, from the project’s initiation to its com-
pletion. Surveys conducted by major software developers, such as IBM and
TRW, summarized by Boehm (1981, Chapter 24) and Jones (1996, Chapter
3), reveal a similar pattern of defect distribution. Software development pro-
fessionals believe that this pattern has not changed substantially in the last
two decades. A characteristic distribution of software defect origins, based
on Boehm (1981) and Jones (1996), is shown in Table 7.3.

Table 7.3: A characteristic distribution of software defect origins

No. Software development phase Average percentage of
defects originating
in phase
1 Requirements specification 15%
2 Design 35%
3 Coding (coding 30%, integration 10%) 40%
4 Documentation 10%

1502 puR SSIUDAIIIBYS |BAOWI 129)9p YOS 10) |]apow Y 7/ ‘ Q


yanti
Highlight

yanti
Highlight

yanti
Highlight


Reviews

8.1 Review objectives 150
8.2 Formal design reviews (DRs) 152
8.2.1 The participants in a DR 153
8.2.2 Preparations for a DR 154
8.2.3 The DR session 155
8.2.4 Post-review activities 156
8.3 Peer reviews 158
8.3.1 Participants of peer reviews 160
8.3.2 Preparations for a peer review session 162
8.3.3 The peer review session 163
8.3.4 Post-peer review activities 165
8.3.5 The efficiency of peer reviews 165
8.3.6 Peerreview coverage 168
8.4 A comparison of the team review methods 168
8.5 Expert opinions 170
Summary 171
Selected bibliography 172
Review questions 172
Topics for discussion 174
Appendix 8A: DR report form 175
Appendix 8B: Inspection session findings report form 176
Appendix 8C: inspection session summary report 177

A common product of the software development process, especially in its
analysis and design phases, is a design document in which the progress of the
development work performed is recorded. The system analyst or analysts
who prepared the document will check it repeatedly, it is to be assumed, in
order to detect any possible error that might have entered. In addition, devel-
opment team leaders are also expected to examine this document and its
details so as to detect any remaining errors before granting their approval.



SM3IAD
(al
NSy 8 3

However, it is clear that because these professionals were involved in pro-
ducing the document, they are unlikely to detect some of their own errors
irrespective of the number of checks. Therefore, only others — such as peers,
superiors, experts, and customer’s representatives (those having different
experiences and points of view, yet not directly involved in creating the doc-
ument) — are capable of reviewing the product and detecting the errors
unnoticed by the development team.
As defined by IEEE (1990), a review process is:

“A process or meeting during which a work product, or set of work prod-
ucts, is presented to project personnel, managers, users, customers, or
other interested parties for comment or approval.”

As these documents are products of the project’s initial phases, reviews
acquire special importance in the SQA process because they provide early
detection and prevent the passing of design and analysis errors “down-
stream”, to stages where error detection and correction are much more
intricate, cumbersome, and therefore costly.

Several methodologies can be implemented when reviewing documents.
In this chapter, the following methods will be discussed:

m Formal design reviews
m Peer reviews (inspections and walkthroughs)
m Expert opinions.

Standards for software reviews are the subject of IEEE Std 1028 (IEEE, 1997).

It should be noted that successful implementations of inspections and
walkthroughs also detect defects in the coding phase, where the appropriate
document reviewed is the code printout.

A case study of the contribution of formal design reviews and inspec-
tions to software quality is presented by MacFarland (2001).

After completing this chapter, you will be able to:

m Explain the direct and indirect objectives of review methodologies.

m Explain the contribution of external experts to the performance of
review tasks.

m Compare the three major review methodologies.

8.1 Review objectives

Several objectives motivate reviews. The review’s direct objectives deal with
the current project, whereas its indirect objectives, more general in nature,
deal with the contribution of the review proper to the promotion of team
members’ professional knowledge and the improvement of the development
methodologies applied by the organization.



The main review objectives are presented in Frame 8.1.

Jri i Review objectives

Direct objectives

m To detect analysis and design errors as well as subjects where corrections,
changes and completions are required with respect to the original
specifications and approved changes.

m To identify new risks likely to affect completion of the project.

m To locate deviations from templates and style procedures and conventions.
Correction of these deviations is expected to contribute to improved
communication and coordination resulting from greater uniformity of
methods and documentation style.

m To approve the analysis or design product. Approval allows the team to
continue to the next development phase.

Indirect objectives

m To provide an informal meeting place for exchange of professional
knowledge about development methods, tools and techniques.

m To record analysis and design errors that will serve as a basis for future
corrective actions. The corrective actions are expected to improve
development methods by increasing effectiveness and quality, among other
product features. (For more about corrective actions, see Chapter 17.)

The various review methods differ in the emphasis attached to the dif-
ferent objectives and in the extent of success achievable for each objective.
Therefore, for better “filtering out” of errors and greater long-term impacts,
a double or even triple “net”, constructed from among the range of review
methods available, should be applied.

Reviews are not activities to be conducted haphazardly. Procedural order
and teamwork lie at the heart of formal design reviews, inspections and walk-
throughs. Each participant is expected to emphasize his or her area of
responsibility or specialization when making comments. At each review ses-
sion, one individual is assigned the task of inscribing mutually agreed
remarks. The subsequent list of items should include full details of defect loca-
tion and description, documented in a way that will later allow full retrieval
by the development team. However, because of the human propensity to try
to design solutions on the spot and, often, to digress to tangential issues or,
even worse, to personal matters during the course of a meeting, a coordina-
tor is needed to maintain control of the discussion and keep it on track.

In general, the knowledge that an analysis or design product will be
reviewed stimulates the development team to work at their maximum. This
represents a further contribution of reviews to improved product quality.

. —_-
S9AI1D3(q0 MaINSY T°8 ‘ o



152

SM3INDY 8

In the following, the various review methods are presented. A compari-
son of team review methods is the subject of Section 8.4; expert opinions are
discussed in Section 8.5.

8.2 Formal design reviews (DRs)

Formal design reviews, variously called “design reviews”, “DRs” and “for-
mal technical reviews (FTR)”, differ from all other review instruments by
being the only reviews that are necessary for approval of the design product.
Without this approval, the development team cannot continue to the next
phase of the software development project. Formal design reviews may be
conducted at any development milestone requiring completion of an analy-
sis or design document, whether that document is a requirement
specification or an installation plan. A list of common formal design reviews
1s given in Frame 8.2.

Jliiiv2 Some common formal design reviews

DPR — Development Plan Review

SRSR — Software Requirement Specification Review
PDR — Preliminary Design Review

DDR — Detailed Design Review

DBDR — Data Base Design Review

TPR — Test Plan Review

STPR — Software Test Procedure Review
VDR — Version Description Review
OMR — Operator Manual Review

SMR — Support Manual Review

TRR — Test Readiness Review

PRR — Product Release Review

IPR — Installation Plan Review

Sauer and Jeffery (2000) discuss a broad range of factors affecting the
effectiveness of DRs, based on research results and a wide-ranging survey of
the literature. Our discussion of formal design reviews will focus on:

The participants
The prior preparations
The DR session

[
[
[
m The recommended post-DR activities.



8.2.1 The participants in a DR

All DRs are conducted by a review leader and a review team. The choice of
appropriate participants is of special importance because of their power to
approve or disapprove a design product.

The review leader

Because the appointment of an appropriate review leader is a major factor
affecting the DR’s success, certain characteristics are to be looked for in a
candidate for this position:

m Knowledge and experience in development of projects of the type reviewed.
Preliminary acquaintance with the current project is not necessary.

m Seniority at a level similar to if not higher than that of the project leader.
m A good relationship with the project leader and his team.
B A position external to the project team.

Thus, appropriate candidates for review team leadership include the devel-
opment department’s manager, the chief software engineer, the leader of
another project, the head of the software quality assurance unit and, in cer-
tain circumstances, the customer’s chief software engineer.

Implementation tip

In some cases, the project leader is appointed as the review leader, the main
justification for this decision being his or her superior knowledge of the
project’s material. In most cases, this choice proves to be undesirable
professionally. A project leader who serves as the review team leader tends,
whether intentionally or nor, to limit the scope of the review and avoid incisive
criticism. Review team members tend to be chosen accordingly. Appointments
of this type usually undermine the purpose for the review and only delay
confrontation with problems to a later, more sensitive date.

Small development departments and small software houses typically
have substantial difficulties finding an appropriate candidate to lead the
review team. One possible solution to this predicament is the appointment
of an external consultant to the position.

The review team

The entire review team should be selected from among the senior members
of the project team together with appropriate senior professionals assigned
to other projects and departments, customer—user representatives, and in
some cases, software development consultants. It is desirable for non-project
staff to make up the majority of the review team.

(SYQ@) SmalAal usdIsap |ewlod '8 ‘ o



154

SM3INDY 8

An important, oft-neglected issue is the size of the review team. A review
team of three to five members is expected to be an efficient team, given the
proper diversity of experience and approaches among the participants are
assured. An excessively large team tends to create coordination problems,
waste review session time and decrease the level of preparation, based on a
natural tendency to assume that others have read the design document.

8.2.2 Preparations fora DR

Although preparations for a DR session are to be completed by all three
main participants in the review — the review leader, the review team and the
development team — each participant is required to focus on distinct aspects
of the process.

Review leader preparations
The main tasks of the review leader in the preparation stage are:

m To appoint the team members

m  To schedule the review sessions

m To distribute the design document among the team members (hard copy,
electronic file, etc.).

It is of utmost importance that the review session be scheduled shortly after
the design document has been distributed to the review team members.
Timely sessions prevent an unreasonable length of time from elapsing before
the project team can commence the next development phase and thus reduce
the risk of going off schedule.

Review team preparations

Team members are expected to review the design document and list their
comments prior to the review session. In cases where the documents are siz-
able, the review leader may ease the load by assigning to each team member
review of only part of the document.

An important tool for ensuring the review’s completeness is the check-
list. In addition to the general design review checklist, checklists dedicated to
the more common analysis and design documents are available and can be
constructed when necessary. Checklists contribute to the design review’s
effectiveness by reminding the reviewer of all the primary and secondary
issues requiring attention. For a comprehensive discussion of checklists, see
Chapter 15.

Development team preparations

The team’s main obligation as the review session approaches is to prepare a
short presentation of the design document. Assuming that the review team
members have read the design document thoroughly and are now familiar



with the project’s outlines, the presentation should focus on the main pro- 155
fessional issues awaiting approval rather than wasting time on description of
the project in general.

Implementation tip

One of the most common techniques used by project leaders to avoid
professional criticism and undermine review effectiveness is the
comprehensive presentation of the design document. This type of
presentation excels in the time it consumes. It exhausts the review team and
leaves little time, if any, for discussion. All experienced review leaders know
how to handle this phenomenon.

In cases where the project leader serves as the review leader, one can observe
especially potent tactics aimed at stymieing an effective review: appointment
of a large review team combined with a comprehensive and long presentation.

(SYQ@) SmalAal usdIsap |ewlod '8 ‘

8.2.3 The DR session

The review leader’s experience in leading the discussions and sticking to the
agenda is the key to a successful DR session. A typical DR session agenda
includes:

(1) A short presentation of the design document.
(2) Comments made by members of the review team.

(3) Verification and validation in which each of the comments is discussed
to determine the required actions (corrections, changes and additions)
that the project team has to perform.

(4) Decisions about the design product (document), which determines the
project’s progress. These decisions can take three forms:

®m Full approval — enables immediate continuation to the next phase
of the project. On occasion, full approval may be accompanied
by demands for some minor corrections to be performed by the proj-
ect team.

m Partial approval — approval of immediate continuation to the next
phase for some parts of the project, with major action items (correc-
tions, changes and additions) demanded for the remainder of the
project. Continuation to the next phase of these remainder parts will
be permitted only after satisfactory completion of the action items.
This approval can be given by the member of the review team
assigned to review the completed action items, by the full review team
in a special review session, or by any other forum the review leader
thinks appropriate.

® Denial of approval — demands a repeat of the DR. This decision is
applied in cases of multiple major defects, particularly critical defects.



SM3IAD
w
IRy 8 o~

8.2.4 Post-review activities

Apart from the DR report, the DR team or its representative is required
to follow up performance of the corrections and to examine the corrected
sections.

The DR report
One of the review leader’s responsibilities is to issue the DR report immedi-
ately after the review session. Early distribution of the DR report enables the
development team to perform the corrections earlier and minimize the atten-
dant delays to the project schedule.

The report’s major sections contain:

B A summary of the review discussions.

m The decision about continuation of the project.

m A full list of the required actions — corrections, changes and additions that
the project team has to perform. For each action item, the anticipated
completion date and project team member responsible are listed.

® The name(s) of the review team member(s) assigned to follow up per-
formance of corrections.

The form shown in Appendix 8A presents the data items that need to be
documented for an inclusive DR report.

The follow-up process

The person appointed to follow up the corrections, in many cases the review
leader him or herself, is required to determine whether each action item has
been satisfactorily accomplished as a condition for allowing the project to
continue to the next phase. Follow-up should be fully documented to enable
clarification of the corrections in the future, if necessary.

Implementation tip

Unfortunately, the entire or even parts of the DR report are often worthless,
whether because of an inadequately prepared review team or because of
intentional evasion of a thorough review. It is fairly easy to identify such cases
from the characteristics of the review report:

m An extremely short report, limited to documented approval of the design
product, listing no detected defects.

m A short report, approving continuation to the next project phase in full,
listing several minor defects but no action items.

m A report listing several action items of varied severity, but no indication of
follow-up (correction schedule, etc.), and no available documented follow-
up activities.



Pressman (2000, Chapter 8) lists guidelines for completing a successful 157
DR, while focusing on infrastructure, preparations for a DR, and conduct of
a DR session are summarized in Frame 8.3. Pressman’s golden “guidelines”
for formal design reviews also apply to inspection and walkthrough sessions.

Pressman’s 13 “golden guidelines” for a successful design
review (based on Pressman 2000, Chapter 8)

Design review infrastructure

Develop checklists for each type of design document, or at least for the
common ones.

Train senior professionals to treat major technical as well as review process
issues. The trained professionals serve as a reservoir for DR teams.

(SYQ@) SmalAal usdIsap |ewlod '8

Periodically analyze past DR effectiveness regarding defect detection to
improve the DR methodology.

Schedule the DRs as part of the project activity plan and allocate the
needed resources as an integral part of the software development
organization’s standard operating procedures.

The design review team

Review teams should be limited in size, with 3—5 members usually being
the optimum.

The design review session

Discuss professional issues in a constructive way while refraining from
personalizing those issues. This demands keeping the discussion
atmosphere free of unnecessary tension.

Keep to the review agenda. Drifting from the planned agenda usually
interferes with the review’s efficiency.

Focus on detection of defects by verifying and validating the participants’
comments. Refrain from discussing possible solutions to the detected
defects so as to save time and avoid wandering from the agenda.

In cases of disagreement about the significance of an error, it is desirable
to end the debate by noting the issue and shifting its discussion to
another forum.

Properly document the discussions, especially details of the participants’
comments and the results of their verification and validation. This step is
especially important if the documentation is to serve as input or a basis for
preparation of the review report.

The duration of a review session should not exceed two hours.



SM3IAD -
Y 8 | &

Post-review activities

H Prepare the review report, which summarizes the issues discussed and the
action items.

m Establish follow-up procedures to ensure the satisfactory performance of
all the corrections included in the list of action items.

The formal design review process is illustrated in Figure 8.1.
The next section deals with peer review methods, and discusses the two
most commonly used methods: inspection and walkthrough.

8.3 Peerreviews

Two peer review methods, inspections and walkthroughs, are discussed in
this section. The major difference between formal design reviews and peer
review methods is rooted in their participants and authority. While most par-
ticipants in DRs hold superior positions to the project leader and customer
representatives, participants in peer reviews are, as expected, the project
leader’s equals, members of his or her department and other units. The other
major difference lies in degree of authority and the objective of each review
method. Formal design reviews are authorized to approve the design docu-
ment so that work on the next stage of the project can begin. This authority
is not granted to the peer reviews, whose main objectives lie in detecting
errors and deviations from standards.

Today, with the appearance of computerized design tools, including
CASE tools, on the one hand, and systems of vast software packages on the
other hand, some professionals tend to diminish the value of manual reviews
such as inspections and walkthroughs. Nevertheless, past software surveys as
well as recent empirical research findings provide much convincing evidence
that peer reviews are highly efficient as well as effective methods.

What differentiates a walkthrough from an inspection is the level of for-
mality, with inspection the more formal of the two. Inspection emphasizes
the objective of corrective action. Whereas a walkthrough’s findings are lim-
ited to comments on the document reviewed, an inspection’s findings are also
incorporated into efforts to improve development methods per se.
Inspections, as opposed to walkthroughs, are therefore considered to con-
tribute more significantly to the general level of SQA.

Inspection is usually based on a comprehensive infrastructure, including:

m Development of inspection checklists developed for each type of design doc-
ument as well as coding language and tool, which are periodically updated.

m Development of typical defect type frequency tables, based on past find-
ings, to direct inspectors to potential “defect concentration areas”.



The development
team

The review leader

The review team

1. Review schedule

> Tfaam 2. Document for
> appointment, review
Prepare the schedule review Read the
design »| and preparing document
document The design agenda
product
+ Presentation
Prepare a of the design product Comments
presentation
YVYY

Formal review session

Corrected design
product — to be
reviewed again

Carry out

No approval
(Major corrections
required)

major <
corrections

Carry out
major

Non-approved parts of project —
major corrections to be carried out

v

Review report

Full approval
(No corrections
required)

Is the
document
approved?

Partial approval
v (Major corrections required)

corrections of
non-approved

Approved parts

arts Corrected
P parts of
A design
product
> Corrections reviewed
Document
parts not Follow-up
Are the
approved
corrected parts report
approved?
Document
parts
Cany out approved
next :
development |
phase -

Figure 8.1: The formal design review process

m Training of competent professionals in inspection process issues, a
process that makes it possible for them to serve as inspection leaders
(moderators) or inspection team members. The trained employees serve
as a reservoir of professional inspectors available for future projects.

159

SMaIA3] 193d £°8



160

SM3INDY 8

m Periodic analysis of the effectiveness of past inspections to improve the
inspection methodology.

®m Introduction of scheduled inspections into the project activity plan and
allocation of the required resources, including resources for correction of
detected defects.

The inspection and walkthrough processes described here are the more com-
monly employed versions of these methods. Organizations often modify
these methods, with adaptations representing “local color”, that is, the char-
acter of the development and SQA units, the software products developed,
team structure and composition, and the like. It should be noted that in
response to this variability, especially in walkthrough procedures, differences
between the two methods are easily blurred. This state of affairs has con-
vinced some specialists to view walkthroughs as a type of inspection, and
vice versa.

The debate over which method is preferable has yet to be resolved, with
proponents of each arguing for the superiority of their favored approach.
Based on their survey of studies of each method, Gilb and Graham (1993)
conclude that as an alternative to inspections, walkthroughs display “far
fewer defects found but at the same cost”.

Our discussion of peer review methods will thus focus on:

Participants of peer reviews

Requisite preparations for peer reviews
The peer review session

Post-peer review activities

Peer review efficiency

Peer review coverage.

With minor adaptations, the principles and process of design peer reviews
can also be successfully applied to code peer reviews.

Design and code inspections, as procedural models, were initially described
and formulated by Fagan (1976, 1986). As to walkthroughs, Yourdon (1979)
provides a thorough and detailed discussion of the related principles
and processes.

8.3.1 Participants of peer reviews

The optimal peer review team is composed of three to five participants. In
certain cases, the addition of one to three further participants is acceptable.
All the participants should be peers of the software system designer-author.
A major factor contributing to the success of a peer review is the group’s
“blend” (which differs between inspections and walkthroughs).

A recommended peer review team includes:

B A review leader
m The author
m Specialized professionals.



The review leader

The role of review leader (“moderator” in inspections, “coordinator’ in
walkthroughs) differs only slightly by peer review type. Candidates for this
position must:

(1) Be well versed in development of projects of the current type and famil-
iar with its technologies. Preliminary acquaintance with the current
project is not necessary.

(2) Maintain good relationships with the author and the development team.
(3) Come from outside the project team.

(4) Display proven experience in coordination and leadership of profession-
al meetings.

(5) For inspections, training as a moderator is also required.

The author
The author is, invariably a participant in each type of peer review.

Specialized professionals
The specialized professionals participating in the two peer review methods
differ by review. For inspections, the recommended professionals are:

A designer: the systems analyst responsible for analysis and design of the
software system reviewed.

® A coder or implementer: a professional who is thoroughly acquainted
with coding tasks, preferably the leader of the designated coding team.
This inspector is expected to contribute his or her expertise to the detec-
tion of defects that could lead to coding errors and subsequent software
implementation difficulties.

B A tester: an experienced professional, preferably the leader of the
assigned testing team, who focuses on identification of design errors usu-
ally detected during the testing phase.

For walkthroughs, the recommended professionals are:

m A standards enforcer. This team member, who specializes in development
standards and procedures, is assigned the task of locating deviations from
those standards and procedures. Errors of this type substantially affect the
team’s long-term effectiveness, first because they cause extra difficulties for
new members joining the development team, and later because they will
reduce the effectiveness of the team that will maintain the system.

B A maintenance expert who is called upon to focus on maintainability, flex-
ibility and testability issues (see Chapter 3), and to detect design defects
capable of impeding correction of bugs or performance of future changes.
Another area requiring his or her expertise is documentation, whose com-
pleteness and correctness are vital for any maintenance activity.

SM3IAD) 199d €£°8 ‘ §



162

SM3INDY 8

A user representative. Participation of an internal (when the customer is
a unit in the same firm) or an external user’s representative in the walk-
through team contributes to the review’s validity because he or she
examines the software system from the point of view of the user-
consumer rather than the designer—supplier. In cases where a “real” user
is not available, as in the development of a COTS software package, a
team member may take on that role and focus on validity issues by com-
paring of the original requirements with the actual design.

Team assignments

Conducting a review session requires, naturally, assignment of specific tasks
to the team members. Two of these members are the presenter of the docu-
ment and the scribe, who documents the discussions.

The presenter. During inspection sessions, the presenter of the document
is chosen by the moderator; usually, the presenter is not the document’s
author. In many cases the software coder serves as the presenter because
he or she is the team member who is most likely to best understand the
design logic and its implications for coding. In contrast, for most walk-
through sessions, it is the author, the professional most intimately
acquainted with the document, who is chosen to present it to the group.
Some experts claim that an author’s assignment as presenter may affect
the group members’ judgement; therefore, they argue that the choice of a
“neutral” presenter is to be preferred.

The scribe. The team leader will often — but not always — serve as the
scribe for the session, and record the noted defects that are to be correct-
ed by the development team. This task is more than procedural; it
requires thorough professional understanding of the issues discussed.

8.3.2 Preparations for a peer review session

The review leader and the team members are to assiduously complete their
preparation, with the type of review determining their scope.

Peer review leader’s preparations for the review session
The main tasks of the review leader in the preparation stage are:

To determine, together with the author, which sections of the design doc-
ument are to be reviewed. Such sections can be:

— The most difficult and complex sections

— The most critical sections, where any defect can cause severe damage
to the program application and thus to the user

— The sections prone to defects.

To select the team members.



m To schedule the peer review sessions. It is advisable to limit a review ses-
sion to two hours; therefore, several review sessions should be scheduled
(up to two sessions a day) when the review task is sizable. It is important
to schedule the sessions shortly after the pertinent design document sec-
tions are ready for inspection. This proximity tends to minimize the scope
and/or number of design additions based on parts of the document that
might be found defective later in the scheduled review. Moreover, for the
process to unfold smoothly, the inspection’s review leader should sched-
ule an overview meeting for his team.

m To distribute the document to the team members prior to the review session.

Peer review team’s preparations for the review session
The preparations required of an inspection team member are quite thorough,
while those required of a walkthrough team member are brief.

Inspection team members are expected to read the document sections to
be reviewed and list their comments before the inspection session begins.
This advance preparation is meant to guarantee the session’s effectiveness.
They will also be asked to participate in an overview meeting. At this meet-
ing, the author provides the inspection team members with the necessary
relevant background for reviewing the chosen document sections: the proj-
ect in general, the logic, processes, outputs, inputs, and interfaces. In cases
where the participants are already well acquainted with the material, an
overview meeting may be waived.

An important tool supporting the inspector’s review is a checklist. In
well-established development departments, one can find specialized check-
lists dedicated to the more common types of development documents (see
Chapter 15).

Prior to the walkthrough session, team members briefly read the materi-
al in order to obtain a general overview of the sections to be reviewed, the
project and its environment. Participants lacking preliminary knowledge of
the project and its substantive area will need far more preparation time. In
most organizations employing walkthroughs, team participants are not
required to prepare their comments in advance.

8.3.3 The peer review session

A typical peer review session takes the following form. The presenter reads
a section of the document and adds, if needed, a brief explanation of the
issues involved in his or her own words. As the session progresses, the par-
ticipants either deliver their comments to the document or address their
reactions to the comments. The discussion should be confined to identifica-
tion of errors, which means that it should not deal with tentative solutions.
Unlike inspection sessions, the agenda of the typical walkthrough session
opens with the author’s short presentation or overview of the project and the
design sections to be reviewed.

163

SMaIA3] 193d £°8



164

SM3INDY 8

During the session, the scribe should document each error recognized by
location and description, type and character (incorrect, missing parts or extra
parts). The inspection session scribe will add the estimated severity of each
defect, a factor to be used in the statistical analysis of defects found and for the
formulation of preventive and corrective actions. The error severity classifica-
tion appearing in Appendix C of MIL-STD-498 (DOD, 1994) and presented in
Table 8.1, provides an accepted framework for classifying error severity.

Concerning the length of inspection and walkthrough sessions, the same
rules apply as to DRs: sessions should not exceed two hours in length, or
schedule for more than twice daily. Pressman’s “golden guidelines” for con-
ducting successful DR sessions are also helpful here (see Frame 8.3).

Session documentation
The documentation produced at the end of an inspection session is much
more comprehensive than that of a walkthrough session.

Two documents are to be produced following an inspection session and
subsequently distributed among the session participants:

(1) Inspection session findings report. This report, produced by the scribe,
should be completed and distributed immediately after the session’s clos-
ing. Its main purpose is to assure full documentation of identified errors
for correction and follow up. An example of such a report is provided
in Appendix 8B.

Table 8.1: Classification of design errors by severity
Severity Description

5 (critical) (1) Prevents accomplishment of essential capabilities.
(2) Jeopardizes safety, security or other critical requirements.

4 (1) Adversely affects the accomplishment of essential capabilities,
where no work-around solution is known.

(2) Adversely affects technical, cost or schedule risks to project or

system maintenance, where no work-around solution is known.

3 (1) Adversely affects the accomplishment of essential capabilities,
where a work-around solution is known.
(2) Adversely affects technical, cost or schedule risks to the
development project or to the system maintenance, where a work-
around solution is known.

2 (1) User/operator inconvenience that does not affect required mission
or operational essential capabilities.
(2) Inconvenience for development or maintenance personnel, but
does not prevent the realization of those responsibilities.

1 (minor) Any other effect.

Source: After DOD (1994)



(2) Inspection session summary report. This report is to be compiled by the
inspection leader shortly after the session or series of sessions dealing
with the same document. A typical report of this type summarizes the
inspection findings and the resources invested in the inspection; it like-
wise presents basic quality and efficiency metrics. The report serves
mainly as input for analysis aimed at inspection process improvement
and corrective actions that go beyond the specific document or project.
An example of an inspection session summary report appears in
Appendix 8C.

At the end of a session or series of walkthrough sessions, copies of the error
documentation — the “walkthrough session findings report” — should be
handed to the development team and the session participants.

8.3.4 Post-peer review activities

A fundamental element differentiating between the two peer review methods
discussed here is the issue of post-peer review.

The inspection process, contrary to the walkthrough, does not end with
a review session or the distribution of reports. Post-inspection activities are
conducted to attest to:

m  The prompt, effective correction and reworking of all errors by the
designer/author and his team, as performed by the inspection leader (or
other team member) in the course of the assigned follow-up activities.

m  Transmission of the inspection reports to the internal Corrective Action
Board (CAB) for analysis. This action initiates the corrective and pre-
ventive actions that will reduce future defects and improve productivity
(see Chapter 17).

A comparison of the peer review methods, participants and process elements
is presented in Figure 8.2.

8.3.5 The efficiency of peer reviews

The issue of defect detection efficiency of peer review methods proper and in
comparison to other SQA defect detection methods is constantly being
debated. Some of the more common metrics applied to estimate the efficien-
cy of peer reviews, as suggested in the literature, are:

B Peer review detection efficiency (average hours worked per defect detected).

m Peer review defect detection density (average number of defects detected
per page of the design document).

m Internal peer review effectiveness (percentage of defects detected by peer
review as a percentage of total defects detected by the developer).

SM3IAD) 199d €£°8 ‘ §



166

SM3INDY 8

PARTICIPANTS
Inspection
Moderator (scribe)

Coder or
Author implementer
(presenter)
Designer Tester

PROCESS

Organizational
preparations

v

Overview meeting

Y

Thorough review of
document

Y

Inspection session(s)

Inspection session report
Y Inspection summary report

Corrections
and reworking

Y

Follow-up of corrections
and reworking

Walkthrough
Coordinator (scribe)

Maintenance Standards
expert enforcer
Author User
(presenter) representative

Organizational
preparations

Y

Brief overview
reading

Y

Walkthrough session(s)

Walkthrough
session report

Figure 8.2: Inspection vs. walkthrough — participants and processes

The literature provides rather meager indications about findings inspection
effectiveness. Dobbins (1998) quotes Madachy’s findings from an analysis of
the design and code inspections conducted on the Litton project. Madachy’s
findings regarding the first two metrics cited above are presented in Table 8.2.

Dobbins (1998) also cites Don O’Neill’s 1992 National Software
Quality Experiment, conducted in 27 inspection laboratories operating in
the US. This experiment provides some insight into the code inspection
process, especially at the preparation stage. A total of 90 925 source code
lines were code-inspected, with the following results:



Table 8.2: The Litton project’s inspection efficiency according to Madachy

Inspection efficiency metrics

SM3IAD) 199d €£°8 ‘ 5

Total Defect Inspection
Type of No. of number of No.of Inspection  detection detection
document inspections  defects pages  resouces density efficiency
and major invested (defects/  (work-hours/
defects (work hours) page) major defect)
Design
inspections
Requirements 21 1243 552 328 2.25 3.69
description (89 major)
Requirements 32 2165 1065 769 2.03 6.57
analysis 117 major
High-level 41 2398 1652 1097 1.45 5.57
design (197 major)
Test 18 1495 1621 457 0.92 3.78
procedures (121 major)
Code
inspections
Code 150 7165 5047* 4612 1.42 5.97
(772 major)
*276 422 lines of code.
Source: After Dobbins (1998)
m Total number of defects detected 1849
® Number of major defects detected 242
m Total preparation time (minutes) 22828

Accordingly:

m Average preparation time per detected defect

12.3 minutes (0.2 hours)
B Average preparation time per detected major defect

94.3 minutes (1.57 hours)

Considering the different environments, a comparison of the defect densities
detected in the National Software Quality Experiment and those found in the
Litton project reveal relatively small differences, as shown below:

National Software
Quality Experiment

Litton Project

Total defect detection density (defects per KLOC*)
Major defect detection density (defects per KLOC*)

20.3
2.66

25.9
2.80

*KLOC = 1000 lines of code.



168

SM3INDY 8

The internal effectiveness of inspections is discussed by Cusumano (1991,
pp. 352-353), who reports the results of a study on the effectiveness of design
review, code inspection and testing at Fujitsu (Japan) for the period
1977-1982. After two decades, the findings are still of interest, even though
no efficiency metrics are provided. A comparison by year of inspection, pre-
sented in Table 8.3, shows substantial improvement in software quality
associated with an increased share of code inspection and design reviews and
a reduced share of software testing. The software quality is measured here by
the number of defects per 1000 lines of maintained code, detected by the users
during the first six months of regular software system use.

Though quantitative research results refer only to the inspection method,
we can expect to obtain similar results after application of the walkthrough
method. This assumption will one day have to be verified empirically for us
to be certain.

8.3.6 Peerreview coverage

Only a small percentage of the documents and total volume of code ever
undergoes peer review. Coverage of about 5-15% of document pages still
represents a significant contribution to total design quality because the fac-
tor that determines the benefits of peer review to total quality is not the
percentage of pages covered but the choice of those pages. Importantly, with
the increased usage of reused software, the number of document pages and
code lines demanding inspection is obviously declining. Frame 8.4 lists those
document sections that are recommended for inclusion in a peer review as
well as those that can be readily omitted.

8.4 A comparison of the team review methods
For practitioners and analysts alike, a comparison of the three team review

methods discussed in this chapter should prove interesting. Table 8.4 pres-
ents such a comparison.

Table 8.3: Code inspection effectiveness at Fujitsu according to Cusumano

Year Defect detection method Defects per 1000
Test % Design review % Code inspection % lines of maintained code
1977 85 - 15 0.19
1978 80 5 15 0.13
1979 70 10 20 0.06
1980 60 15 25 0.05
1981 40 30 30 0.04
1982 30 40 30 0.02

Source: After Cusumano (1991)



Assuring the quality of software
maintenance components

11.1 Introduction 255
11.2 The foundations of high quality 257
11.2.1 Foundation 1: software package quality 257
11.2.2 Foundation 2: maintenance policy 259
11.3 Pre-maintenance software quality components 261
11.3.1 Maintenance contract review 261
11.3.2 Maintenance plan 262
11.4 Maintenance software quality assurance tools 264
11.4.1 SQA tools for corrective maintenance 265

11.4.2 SQA tools for functionality improvement maintenance 266
11.4.3 SQA infrastructure components for software

maintenance 267
11.4.4 Managerial control SQA tools for software

maintenance 270
Summary 273
Selected bibliography 275
Review questions 275
Topics for discussion 277

The major part of the software life cycle is the operation period, usually
lasting for 5 to 10 years, although cases of software being operational for
15 years and even more are not rare. What makes one software package
capable of reaching “old age” with satisfied users, while another package,
serving almost the same population, “perishes young”? The main factor
responsible for long and successful service is the quality of maintenance.
Just how important software maintenance is can be surmised by the
attention given the subject in the ISO 9000-3 Standard (see ISO (1997),
Sec. 4.19 and ISO/IEC (2001), Sec. 7.5), IEEE (1998) and Oskarsson and
Glass (1996).

This chapter will therefore pursue the following quality assurance issues
as they relate to software maintenance:



The foundations for high quality maintenance
Pre-maintenance software quality components

SQA tools for corrective maintenance

SQA tools for functionality improvement maintenance
Infrastructure SQA tools for software maintenance
Managerial control SQA tools for software maintenance.

After completing this chapter, you will be able to:

List software maintenance components and explain their distinction.
Explain the foundations of high quality maintenance.

Describe and explain pre-maintenance software quality components.
List the infrastructure tools that support maintenance quality assurance.
List the managerial tools for controlling software maintenance quality
and explain their importance.

11.1 Introduction

The following three components of maintenance service are all essential for
success:

Corrective maintenance — user support services and software corrections.

Adaptive maintenance — adapts the software package to differences in new
customer requirements, changing environmental conditions and the like.

Functionality improvement maintenance — combines (1) perfective mainte-
nance of new functions added to the software so as to enhance performance,
with (2) preventive maintenance activities that improve reliability and system
infrastructure for easier and more efficient future maintainability.

The inclusion of user support services (“user support centers”) in corrective
maintenance may need some clarification. User support services is the
address for solution of all user difficulties arising when using the software
system; software correction services are usually integrated in this service. The
user’s difficulties may have been caused by:

m Code failure (usually termed “software failure”).

® Documentation failure in the user’s manual, help screens or other form of

documentation prepared for the user. In this case, the support service can
provide the user with correct instructions (although no correction of the
software documentation itself is performed).

Incomplete, vague or imprecise documentation.

User’s insufficient knowledge of the software system or his or her failure
to use the documentation supplied. In these situations no software system
failure is encountered.

255

uondNposul 11T



256

sjusuodwod ddueudlUIRW 91BMYOS JO AJljenb syl Suunssy 11

The first three of the above causes are considered software system failures.
In addition, integration of user support services and software correction
services is generally accomplished in close cooperation, with much sharing of
information. The other components of maintenance services — functionality
improvement and adaptive maintenance — tend not to be initiated by the user
support services. In most cases, the functionality improvement and adaptive
tasks display the characteristics of a small or large project, depending on the
customer’s needs. This being the case, these tasks can be performed by a soft-
ware development unit as well. Considering the above, it is reasonable to
include user support services among the corrective maintenance activities.

Generally, one may say that while corrective maintenance ensures that
current users can operate the system as specified, adaptive maintenance
enables expansion of the user population, while functionality improvement
maintenance extends the package’s service period.

As mentioned in previous chapters, the combination of the three com-
ponents of software maintenance consumes more than 60% of total design
and programming resources invested in a software system throughout its life
cycle (Pressman, 2000). Others estimate that the share of maintenance
resources ranges from over 50% (Lientz and Swanson, 1980) to about
65-75% (McKee, 1984) of total project development resources.

The distribution of maintenance resources to the various maintenance
services is estimated as follows:

Lientz and Oskarsson and
Maintenance service Swanson (1980) Glass (1996)
Corrective maintenance 22% 17%
Adaptive maintenance 24% 23%
Functionality improvement maintenance 54% 60%

Surveys of this issue are rare; however, the figures reported by Nosek and
Palvia (1990) do not significantly diverge from the estimates shown here. It
is believed that the 1980 figures, with minimal changes, continue to repre-
sent actual distribution.

The objectives of software maintenance QA activities are presented in
Frame 11.1 (repeated from Frame 2.7).

As the nature of the different types of software maintenance components
varies substantially, so do the required quality assurance tools. In general,
functionality improvement maintenance activities, most adaptive mainte-
nance activities and the software development process basically share the
same software quality assurance tools. However, SQA tools employed for cor-
rective maintenance tend to display some unique characteristics. It is
important to remember that corrective maintenance activities are service
activities and that, unlike functionality improvement and adaptive tasks, they
are performed under the close supervision of the user/customer. Management of
corrective maintenance services focuses mainly on the availability of services



m Software maintenance QA activities: objectives

1. Assure, with an accepted level of confidence, that the software
maintenance activities conform to the functional technical requirements.

2. Assure, with an accepted level of confidence, that the software maintenance
activities conform to managerial scheduling and budgetary requirements.

3. Initiate and manage activities to improve and increase the efficiency of
software maintenance and SQA activities. This involves improving the
prospects of achieving functional and managerial requirements while
reducing costs.

and their quality (measured by time to solution, percentage of cases of cor-
rection failures, etc.) rather than on the budgetary and timetable controls
typically applied when managing functionality improvement and adaptive
maintenance tasks.

General discussion of a variety of software maintenance issues took place
at the IEEE International Conference in Oxford, England (IEEE Computer
Society, 1999).

11.2 The foundations of high quality

It goes without saying that the quality of the software package to be main-
tained is perhaps the single most important foundation underlying the
quality of maintenance services. Another critical foundation is maintenance
policy. The discussion of these subjects follows.

11.2.1 Foundation 1: software package quality

The quality of the software package that is to be maintained clearly stems
from the expertise and efforts of the development team as well as the SQA
activities performed throughout the development process. If the quality of
the package is poor, maintenance will be poor or ineffective, almost by defi-
nition. In light of this fundamental insight, we choose to stress here those
seven of the original 11 quality assurance factors (see Chapter 3) that have
a direct impact on software maintenance. Specifically, we will be discussing
two of the five product operation factors, all three product revision factors
and two of the three product transition factors.
The two product operation factors are as follows.

(1) Correctness — includes:

® Output correctness: The completeness of the outputs specified
(in other words, no pre-specified output is missing), the accuracy
of the outputs (all system’s outputs are processed correctly), the
up-to-datedness of the outputs (processed information is up to date

Aynenb ysiy jo suonepunojayl 11T ‘ §



sjusuodwod ddueudlUIRW 91BMYOS JO AJljenb syl Suunssy 11 ‘ g

(2)

as specified) and the availability of the outputs (reaction times do
not exceed the specified maximum values, especially in online and
real-time applications).

® Documentation correctness. The quality of documentation: its com-
pleteness, accuracy, documentation style and structure. Documentation
formats include hard copy and computer files — printed manuals as well
as electronic “help” files — whereas its scope encompasses installation
manuals, user manuals and programmer manuals.

m Coding qualification. Compliance with coding instructions, especial-
ly those that limit and reduce code complexity and define standard
coding style.

Reliability. The frequency of system failures as well as recovery times.

The three product revision factors are as follows.

(1)

(2)

Maintainability. These requirements are fulfilled first and foremost by
following the software structure and style requirements and by imple-
menting programmer documentation requirements.

Flexibility. Achieved by appropriate planning and design, features that
provide an application space much wider than necessary for the current
user population. In practice, this means that room is left for future func-
tional improvements.

Testability. Testability includes the availability of system diagnostics to

be applied by the user as well as failure diagnostics to be applied by the
support center or the maintenance staff at the user’s site.

Lastly, the two product transition factors are as follows.

(1)

(2)

Portability. The software’s potential application in different hardware
and operating system environments, including the activities that enable
those applications.

Interoperability. The package’s capacity to interface with other pack-
ages and computerized equipment. High interoperability is achieved
by providing capacity to meet known interfacing standards and match-
ing the interfacing applied by leading manufacturers of equipment
and software.

To sum up — the efforts to assure the quality of maintenance services should
begin early in the software development phase, when each of the quality fac-
tors reviewed above is specified in the project requirements and again later,
when integrated in the project design.

The above seven factors and their distinctive impact on the various soft-

ware maintenance components are presented in Table 11.1.



Table 11.1: Quality factors: impacts on software maintenance components

Software maintenance components

Quality factor Quality sub-factors Corrective Adaptive Functionality
improvement

Correctness Output correctness High

Documentation correctness High High High

Coding qualification High High High
Reliability High
Maintainability High High High
Flexibility High
Testability High
Portability High
Interoperability High

11.2.2 Foundation 2: maintenance policy

The main maintenance policy components that affect the success of software
maintenance are the version development and change policies to be applied
during the software’s life cycle.

Version development policy

This policy relates mainly to the question of how many versions of the soft-
ware should be operative simultaneously. While it is clear that this is not an
issue for custom-made software that serves one organization, the number of
versions becomes a major issue for COTS software packages that are
planned to serve a large variety of customers. The version development pol-
icy for the latter can take a “sequential” or “tree” form. When adopting a
sequential version policy, only one version is made available to the entire cus-
tomer population. This version includes a profusion of applications that
exhibit high redundancy, an attribute that enables the software to serve the
needs of all customers. The software must be revised periodically but once a
new version is completed, it replaces the version currently used by the entire
user population.

When adopting a tree version policy, the software maintenance team sup-
ports marketing efforts by developing a specialized, targeted version for
groups of customers or a major customer once it is requested. A new version
is inaugurated by adding special applications or omitting applications, depend-
ing on what is relevant to customer needs. The versions vary in complexity and
level of application - targeted industry-oriented applications and so forth. If
this policy is adopted, the software package can evolve into a multi-version
package after several years of service, meaning it will resemble a tree, with sev-
eral main branches and numerous secondary branches, each branch
representing a version with specialized revisions. As opposed to sequential ver-
sion software, maintenance and management of tree version software is much

259

Ayenb ysiy jo suonepunoyayl z'T1 ‘



260

sjusuodwod ddueudlUIRW 91BMYOS JO AJljenb syl Suunssy 11 ‘

more difficult and time-consuming. Considering these deficiencies, software
development organizations try to apply a limited tree version policy, which
allows only a small number of software versions to be developed.

Example: After a few years of application, Inventory Perfect, an inventory
management package developed according to the tree policy, has evolved into
a seven-version software package with these main branches: Pharmacies,
Electronics, Hospitals, Bookstores, Supermarkets, Garages—Auto Repairs,
and Chemical Plants. Each of the branches includes four or five secondary
branches that vary by number of software modules, level of implementation
or specific customer-oriented applications. For example, the Bookstores ver-
sion has the following five secondary branches (versions): bookstore chains,
single bookstores, advanced management bookstores, and special versions for
the LP bookstore chain and for CUCB (City University Campus Bookstores).
The software maintenance team tends to a total of 30 different versions of the
software package simultaneously, with each version revised periodically
according to customer requests and the team’s technical innovations.

The daily experience of the maintenance team therefore includes over-
coming hardships created by the version structure of the package that go
beyond those related to the software itself:

m Faulty corrections caused by inadequate identification of the module
structure of the current version used by the specific customer.

m Faulty corrections caused by incorrect replacement of a faulty module by
a module of another version that later proved to be inadequate for inte-
gration into the customer’s package version.

m Efforts invested to convince customers to update their software package
by adding newly developed modules or replacing current module versions
by a new version. Following successful efforts to persuade customers to
update their software package, the problems and failures incurred when
attempting to integrate newly developed modules or to replace current
with advanced versions of the modules.

The head of the maintenance team has often mentioned that she envies her
colleague, the head of Inventory Star’s maintenance team, who had insisted
that the software package developed by his firm was to offer only one com-
prehensive version for all customers.

It is clear that the sequential policy adopted by Inventory Star requires
much less maintenance; as only one version has to be maintained, it is much
easier to maintain its quality level.

Change policy

Change policy refers to the method of examining each change request and
the criteria used for its approval. It is clear that a permissive policy, whether
implemented by the CCB (the Change Control Board) or any other body
authorized to approve changes, contributes to an often-unjustified increase



in the change task load. A balanced policy, one that requires thorough exam-
ination of change requests, is to be preferred as it allows staff to focus on the
most important and beneficial changes, as well as those that they will be able
to perform within a reasonable time and according to the required quality
standards. This policy will, of course, culminate in the approval of only a
small proportion of change requests.

For more about change control, see Chapter18.

11.3 Pre-maintenance software quality components

Like pre-project SQA components, the pre-maintenance SQA activities to be
completed prior to initiating the required maintenance services are of utmost
importance. These entail:

B Maintenance contract review
B Maintenance plan construction.

11.3.1 Maintenance contract review

When considering the maintenance contract, a broad perspective should be
embraced. More than anything else, decisions are required about the cate-
gories of services to be contracted. These decisions depend on the type of
customers served: customers for whom a custom-made package has been
developed, customers who purchased a COTS software package, and inter-
nal customers. So, before commencing to supply software maintenance
services to any of these customers, an adequate maintenance contract should
be finalized that sets down the total range of maintenance obligations
according to the relevant conditions.

Implementation tip

Maintenance services to internal customers are often not contracted. In a
typical situation, some of the services provided during the running-in period
are continued, with no one bothering to determine the binding obligations for
continuation of these services. In such situations, dissatisfaction is expected
on both sides: the internal customers feel that they need to ask for favors
instead of receiving the regular service that they deserve, whereas the
development team eventually experiences requests to perform maintenance
tasks as intrusions once they have begun work on another project.

To prevent these tensions, an “internal service contract” should be written. In
this document, the services to be provided by the internal maintenance team
to the internal customer are clearly defined. By eliminating most of the
misunderstanding related to these vital services, such a contract can serve as
the basis for satisfactory maintenance to internal customers.

261

syuauodwod Ayljenb a1em)yos adueuajulew-ald €11 ‘



262

sjusuodwod ddueudlUIRW 91BMYOS JO AJljenb syl Suunssy 11

The maintenance contract review activities include proposal draft
reviews as well as contract draft reviews. Naturally, the objectives and imple-
mentation of maintenance contract reviews follow the lines of pre-project
contract reviews (see Chapter 5). We next list the major objectives of soft-
ware maintenance contract reviews.

(1) Customer requirements clarification
The following issues deserve special attention:

m Type of corrective maintenance services required: list of remote services
and on-site services to be provided, hours of service, response time, etc.

m Size of the user population and the types of applications to be used.

m Location of users, especially of long-distance (or overseas) sites and
the types of applications installed in each.

m Adaptive and functionality improvement maintenance to be provided
and procedures for submission of requests for service as well as pro-
posing and approving performance of these services.

(2) Review of alternative approaches to maintenance provision
The following options deserve special consideration:

m Subcontracting for sites or type of service
m Performance of some services by the customer himself with support
from supplier’s maintenance team.

(3) Review of estimates of required maintenance resources

First, these estimates should be examined on the basis of the required
maintenance services, clarified by the proposal team. Then, the company’s
capacity to meet its commitments with respect to professional competence
as well as availability of maintenance teams should be analyzed.

(4) Review of maintenance services to be provided by subcontractors and/or
the customer

This review refers to the definition of the services provided by each par-
ticipant, payments to subcontractors, quality assurance and follow-up
procedures to be applied.

(5) Review of maintenance costs estimates

These estimates should be reviewed on the basis of required resources.

11.3.2 Maintenance plan

Maintenance plans should be prepared for all customers, external and inter-
nal. The plan should provide the framework within which maintenance
provision is organized. Hence, as anticipated, the maintenance and develop-
ment plans (see Chapter 6) are based on similar concepts.

The plan includes the following:

(1) A list of the contracted maintenance services

®m The internal and external customers, the number of users, the loca-
tions of each customer site.



m The characteristics of corrective maintenance services (remote and
on site).

m The obligations for adaptive and functional improving maintenance
service provision for each customer.

A description of the maintenance team’s organization

The maintenance team organization plan focuses on manpower require-
ments, which should be carefully considered according to these criteria:

®m The number of required team members. If services are to be provided
from several facilities, the team requirement for each facility.

m The required qualifications for team members according to the main-
tenance tasks, including acquaintance with the software package(s) to
be maintained.

m Organizational structure of the maintenance teams, including names
of team leaders.

m Definition of tasks (responsibility for customers, types of applica-
tions, etc.) for each team.

m Training needs.

Implementation tip

In determining the maintenance team and its organization, one should
consider preparing for peak demand for corrective maintenance services.
The support in peak situations can be based on temporary use of
development and other maintenance teams located at the same or other
facilities. It should be emphasized that effective peak-load support is
based on pre-planning, which includes training. Maintenance teams
require regular training for these tasks; on-the-spot improvised solutions
may prove to be harmful rather than helpful.

A list of maintenance facilities

Maintenance facilities — the infrastructure that makes it possible to pro-
vide services — include:

®m The maintenance support center with its installed hardware and com-
munication equipment to provide user support and software
correction services.

m A documentation center containing a complete set of documents (in
printed or electronic format):

— The software documentation, including the development
documentation

— The service contracts

— The software configurations for each customer and versions of
the software packages installed at each site, provided by configu-
ration management

— The maintenance history records for each user and customer.

263

sjusauodwod Ayljenb a1em)jos adueuajulew-ald €11



264

sjusuodwod ddueudlUIRW 91BMYOS JO AJljenb syl Suunssy 11

(4) A list of identified maintenance service risks

Maintenance service risk relates to situations where failure to provide
adequate maintenance is anticipated. These risks include:

m Staff shortages, whether throughout the organization’s maintenance
services, in a specific maintenance support center or for a specific
application.

® Inadequate qualifications or acquaintance with part of the relevant
software packages for performing user support services and/or cor-
rective maintenance tasks.

® Insufficient team members qualified to perform functional improve-
ment as well as adaptive tasks, in cases where a customer places an
order of a significant size.

(5) A list of required software maintenance procedures and controls

Most of the required procedures refer to the processes implemented by
the corrective maintenance teams and by the user support center. These
procedures typically deal with:

m Handling customers’ applications

® Handling a software failure report

m Periodic reporting and follow-up of user support services

m Periodic reporting and follow-up of corrective maintenance services
® Training and certification of maintenance team members.

For more about software quality procedures, see Chapter 14.
(6) The software maintenance budget

The estimates used in the corrective maintenance budget are based on
the manpower organization plan, required facilities and investments
needed to establish these facilities, team training needs and other tasks.
They can be prepared once the manpower, facilities and procedures have
been defined. Estimates for adaptive and functionality improvement
maintenance tasks are prepared according to the expected workload
induced by the changes and improvements to be carried out.

11.4 Maintenance software quality assurance tools

A great variety of software quality assurance tools are used throughout the
operational period of the software life cycle. The specific nature of each com-
ponent of software maintenance — corrective maintenance, adaptive
maintenance and functionality improvement maintenance — demands that
different sets of SQA tools be used for each. Furthermore, the operational
period of the software typically makes intensive use of infrastructure SQA
tools and managerial control tools more probable.

Some indication of the extent of resources invested in SQA during main-
tenance has been prepared by Perry (1995). In a survey he carried out in
November 1994, the participants reported that based on their experience,



31% of their maintenance schedules were dedicated to quality assurance
(reviews and testing tasks).
The next sections are dedicated to the following subjects:

SQA tools for corrective maintenance

SQA tools for functionality improvement maintenance
SQA infrastructure tools for software maintenance

SQA tools for managerial control of software maintenance.

11.4.1 SQA tools for corrective maintenance

Corrective maintenance activities entail primarily (a) user support services
and (b) software corrections (bug repairs). User support services deal with
cases of software code and documentation failures, incomplete or vague doc-
umentation; they may also involve instruction of users who have insufficient
knowledge of the software or fail to use the available documentation.
Software correction services — bug repairs and documentation corrections —
are called for in cases of software failures, and are typically provided during
the initial period of operation (despite the efforts invested in testing) and
continue to be required, though in lower frequency. As the two types of serv-
ice are inherently different, distinctive sets of quality assurance tools are used
irrespective of the shared focuses on quality of service. Nonetheless, in many
cases the same team performs both types of corrective maintenance.

In addition to infrastructure and management control SQA tools (dis-
cussed later in this section), most bug repair tasks require the use of mini life
cycle SQA tools, mainly mini-testing. Mini-testing procedures are required to
handle repair patch (small-scale) tasks, characterized by a small number of
coding line changes together with intense pressure to complete the correc-
tions rapidly. The implications of delayed repair are such that an abridged —
mini — form of testing is often employed. However, use of these mini testing
tools should be retained to avoid compromise situations of no testing.

In order to assure “mini testing” quality, these guidelines should be

adhered to:

m Testing is to be performed by a qualified tester, not by the programmer
who carried out the repair.

B A testing procedure document (in most cases 2—3 pages long) should be
prepared. Included in the document are a description of the anticipated
effects of the repair, the scope of corrections and a list of test cases to be
activated. A re-testing procedure document, similar to the testing proce-
dure document, should be also be prepared to handle testing of repairs of
errors detected in previous tests.

B A test report fully documenting the errors detected in each stage of test-
ing and re-testing should be completed.

m The head of the testing team is to review the testing documentation for
the scope of corrections, the adequacy of the test cases and the testing

265

51001 9duelInsse Alljenb alemyos asueuaule|y 11 ‘



266

Sjusuodwod ddueuduIRW 3IBMYOS JO AJjenb syl Suunssy 11

results. Responsibility for approval of the repaired software for opera-
tional (sometimes termed “production”) use rests with the team’s head.

m For repairs considered “simple and trivial”, especially for those per-
formed at the customer’s site, mini-testing may be avoided.

Subcontracting (outsourcing) maintenance services, especially user support
services, has become quite common whenever it is too troublesome or uneco-
nomic for the maintenance contractor to directly provide these services. The
main tool to assure the quality of the subcontractor’s maintenance services
and pave the way for smooth relations is the contractor-subcontractor
contract. The SQA tools integrated into the contract focus on:

m Procedures for handling a specified range of maintenance calls.
m Full documentation of the service procedures.

B Availability of records documenting professional certification of the sub-
contractor’s maintenance team members, for contractor review.

®m Authorization for the contractor to carry out periodic review of the main-
tenance services as well as customer satisfaction surveys.

® Quality-related conditions requiring imposition of penalties and termina-
tion of the subcontracting contract in extreme cases.

Once maintenance becomes operative, the contractor should regularly con-
duct the agreed-upon reviews of maintenance service and customer
satisfaction surveys.

Implementation tip

Many of the bitter failures experienced with software maintenance contracts are
due to subcontracting. Failures often result from lax control over the
subcontractor’s performance, not from the absence of software quality assurance
clauses from the contract. The reasons for subcontracting, such as a shortage of
maintenance professionals at the remotely located customer’s site that consumes
the subcontracted services, may induce faulty control over the subcontractor’s
services. In other words, successful subcontracting requires adequate
organization and procedures to implement proper control over performance.

More about subcontracting may be found in Chapter. 12.

11.4.2 SQA tools for functionality improvement maintenance

Due to the similarity of functionality improvement maintenance tasks to
software development project tasks, project life cycle tools (reviews and test-
ing) are regularly applied for functionality improvement maintenance. These
same tools are also regularly implemented for large-scale adaptive mainte-



Assuring the quality of external
participants’ contributions

12.1 Introduction: the HealthSoft case 280
12.2 Types of external participants 282
12.3 Risks and benefits of introducing external participants 283
12.4 Assuring the quality of external participants’ contributions:
objectives 286
12.5 SQA tools for assuring the quality of external participants’
contributions 287
12.5.1 Requirements document reviews 287
12.5.2 Choice of external participants 288
12.5.3 The project coordination and joint control committee 290
12.5.4 Participation in design reviews 291
12.5.5 Participation in software testing 291
12.5.6 Specialized procedures 291
12.5.7 Certification of external participants’ team leaders
and other staff 292
12.5.8 Progress reports 292
12.5.9 Review of deliverables (documents) and acceptance
tests 293
Summary 293
Selected bibliography 295
Review questions 295
Topics for discussion 296

Evidence for the importance of assuring the quality of external participants’
contributions is found in the ISO 9000-3 Standard (see ISO, 1997, Sec. 4.6 and
ISO/IEC, 2001, Sec. 7.4), IEEE Std 1062 (IEEE, 1998) and the software
quality assurance literature (see Basili and Boehm, 2001; Oskarsson and
Glass, 1996).



280

suoninquiuod sjuedpiued jeuialxa Jo Ayjenb ayl Suunssy g1 ‘

After completing this chapter, you will be able to:

m Explain the difference between contractors and external participants.

m List the types of external participants, and explain the benefits they pro-
vide to the contractor.

m Describe the risks for the contractor associated with turning to external
participants.

m List the SQA tools appropriate for use with external participants and add
short statements regarding the risks they help to eliminate or reduce.

12.1 Introduction: the HealthSoft case

The RedAid Health Insurance tender presented a real challenge for
HealthSoft, a software house that specialized in hospital and pharmacy soft-
ware. The tender’s main item was an integrative nationwide system for
online handling of fees charged by hospitals for services, by pharmacies for
prescriptions, by physicians for clinic visits and by medical laboratories for
tests. The tender also included a comprehensive patient’s personal health
information service to be made available through the Internet. The cus-
tomer’s Management Information System (MIS) Department was to develop
the home office modules, based on the existing software. In addition, the
MIS Department will purchase and install the hardware and communication
equipment according to the contractor’s specifications, see to the computer-
ized interfacing agreements required with RedAid’s suppliers of health
services, and instruct RedAid personnel in the new system’s operation. All
the systems were to be under tight security, with high reliability requisite for
all the components. The system was to become fully operative not later than
13 months after signing the contract, with the contractor fully responsible
for the quality and timely completion of all system parts.

Already at the beginning of preparing the RedAid tender proposal, the
HealthSoft tender team realized that they needed the professional support of
companies that specialize in software security and data communication. The
size of the anticipated programming load led the team to decide that a sub-
contractor would carry out 60%-70% of the programming load. Cape-Code,
a very small software house located in a nearby suburb, was chosen as the
programming subcontractor on the basis of the lowest price proposed. Some
“breathing space” when preparing the proposal was obtained when the team
discovered that the new enhanced Medal Software’s product Version SE of the
widely used Medal Version 5, a laboratory accounting software program,
included important new modules. These new modules for online external
authorization of patient credit and for the preparation of monthly accounts
for organizational customers like RedAid suited the tender requirements.
Medal’s developers had stressed the wide variety of their package’s interfac-
ing capabilities, which were touted as suited to almost any requirements. The
integration of Medal’s SE version into the proposed software solved one of



the remaining difficulties hampering completion of the proposal and enabled
substantial reduction of development costs. Finally, HealthSoft signed agree-
ments with all the potential external participants — Lion Securities, Comcom
and Cape-Code, subcontractors for security, communication and program-
ming, respectively — that framed its responsibility for financial issues as well
as coordination between the various organizations.

The day HealthSoft was announced winner of the tender was one of sat-
isfaction and joy for the company. Within a few days, all the project teams
were working “at full speed”. Monthly coordination meetings were con-
ducted regularly. The subcontractors reported satisfactory progress
according to the project schedule. The first signs of alert appeared in the
tenth meeting. Comcom, the communication subcontractor, reported that
some of RedAid’s major suppliers had refused to supply the information
needed for planning the communication equipment to be installed on their
premises as they had not reached an agreement with RedAid on the issue. As
expected, Lion Securities, the security subcontractor, faced similar difficul-
ties. Both subcontractors declared that even if full cooperation was to be
achieved within a week, a one-month delay in completion of the project was
inevitable. Yet, Cape-Code people continued to express their satisfaction
with the progress of the development tasks they had undertaken. The next
coordination meeting was a special meeting, called after only two weeks, to
discuss the severe delays that had appeared in Cape-Code’s schedule. The
delays had been discovered by a HealthSoft team when it tried to coordinate
a planned integration test. At this late stage, HealthSoft found out that Cape-
Code had subcontracted the development task to another small software
house. It became clear that all the previous calming reports had not been
based on actual information; they were fabrications, meant to satisfy
HealthSoft people (and ensure regular income to Cape-Code).

Integration tests of the Cape-Code modules, begun 10 weeks behind
schedule, identified many more faults — of all kinds — than anticipated.
Correction time required exceeded that planned. About the same time, the
team assigned to integrate the Medal Version SE software into the system
realized that the enhanced version was not operative for all new modules,
particularly the online external authorization of patients’ credit status. In
addition, the interfacing trials with other system modules failed. Medal
Software assigned a special team to complete the development of the missing
module parts and perform the necessary corrections. Though their efforts
were visible, successful completion of the software integration tests was
accomplished almost 20 weeks behind schedule.

The system test started 19 weeks behind schedule, with the same severi-
ty of quality problems that had been observed at the integration phase.
Finally, about five months late, it became possible to install the hardware
and software equipment in RedAid’s main office and at its suppliers’ sites.

The three-week conversion phase of the project, begun 23 weeks behind
schedule, was, surprisingly, a great success, with no major faults discovered and
immediate repair of all faults that were revealed. However, the implementation

281

9Sed 1JoSyljeaH oyi uoidonpoliul 1°¢T



282

suoninquiuod sjuedpiued jeuialxa Jo Ayjenb ayl Suunssy g1 ‘

phase was a colossal failure: only one-third of the staff listed for training
actually participated in the instruction courses, and the majority of those
participating displayed insufficient preliminary knowledge of the new sys-
tems. Success with supplier personnel was even lower. Only eight weeks later
could regular operation of the system begin, but with only about half of
RedAid’s suppliers integrated into the new system.

The project, a frustrating one for all who participated, ended with a series
of court claims. RedAid sued HealthSoft, and HealthSoft sued RedAid, Cape-
Code and Medal Software, the developers of the Medal software package.
Lion Securities and Comcom decided not to sue HealthSoft — despite the extra
costs they had incurred following RedAid’s lack of cooperation and the sub-
sequent obstacles raised to efficient performance of their parts in the project
— in expectation of continuing cooperation with HealthSoft on future proj-
ects. The trials lasted for years. The only consolation was that the new
software, once in operation, was a great success, with many of RedAid’s man-
agement admitting that the system worked well beyond their expectations.

You may ask yourself:

m Could the final gratifying results have been achieved without the “mess”
experienced during the course of the project?

m Could they have been achieved without the major losses faced by all the
participants?

B Was the HealthSoft method of choosing subcontractors satisfactory?
m Was the method of purchasing COTS software appropriate?

B Was the method of controlling the implementation of the customer’s con-
tribution to the project adequate?

B Was HealthSoft’s control over its external participants adequate?

Whatever your responses to the specific questions, we can readily claim that
had HealthSoft properly implemented SQA activities, problems like those
described could have been avoided. Prevention of such troubles is the subject
of this chapter.

12.2 Types of external participants

The partners to a software development project — the organization that is inter-
ested in the software system (the “customer”) and the organization that
undertakes to carry out the development (the “contractor”) — are nowadays
often not the only participants in the project. The external participants involved
in a software development project contribute to the project but are not con-
tractors, nor are they the contractor’s partners. Their contributions to the
project are structured through agreements with the contractor (subcontractors
and suppliers of COTS software) or through those clauses of the project con-



tract that state what parts of the project will be performed by the customer
himself. The larger and more complex the project, the greater the likelihood
that external participants will be required, and the larger the proportion of
work to be transmitted or parceled out. The motivation for turning to exter-
nal participants rests on several factors, ranging from the economic to the
technical and to personnel-related interests, and reflects a growing trend in
the allocation of the work involved in completing complex projects.

(1)

External participants can be classified into three main groups:

Subcontractors (currently called “outsourcing” organizations) that
undertake to carry out parts of a project, small or large, according to cir-
cumstances. Subcontractors usually offer the contractor at least one of
the following benefits: staff availability, special expertise or low prices.

Suppliers of COTS software and reused software modules. The advan-
tages of integrating these ready elements are obvious, ranging from
timetable and cost reductions to quality. One expects that integration of
these ready-for-use elements will achieve savings in development
resources, a shorter timetable and higher quality software. Software of
higher quality is expected as these components have already been tested
and corrected by the developers as well as corrected according to the
faults identified by previous customers. The characteristics of COTS
software and quality problems involved in their use are discussed by
Basili and Boehm (2001).

The customer themselves as participant in performing the project. It is
quite common for a customer to perform parts of the project: to apply
the customers’ special expertise, respond to commercial or other security
needs, keep internal development staff occupied, prevent future mainte-
nance problems and so forth. This situation does have drawbacks in
terms of the customer—supplier relationship necessary for successful per-
formance of a project, but they are overweighed by the inputs the
customer makes. Hence, the inevitability of this situation has become a
standard element of many software development projects and contrac-
tual relations.

Typical contracting structures of projects are presented in Figure 12.1.

12.3 Risks and benefits of introducing external participants

The main risks to project quality associated with introducing external par-
ticipants within the framework of the project are as follows.

(1)

Delays in completion of the project. In those cases where external partici-
pants are late in supplying their parts to the software system, the project
as a whole will be delayed. These delays are typical for subcontractors’

283

sjuedioiued jeulalxe SuldINpoIIUl JO S}BUSG puR SYSIY €71 ‘



284

suoninquiuod sjuedpiued jeuialxa Jo Ayjenb ayl Suunssy g1 ‘

(@ “Simple” cor}tfacting project ST
(no external participants) 7y
Y

(b) “Compound” contracting project Contractor
(with external participants)

Project contract clauses Customer
that deal with customer- 1
supplied parts -
Project contract
Y
Contractor

I Supplier of

COTS software

Contracts

Figure 12.1: Software development projects: typical contracting structures

parts and customers’ parts but less so for COTS software suppliers. In
many cases the control over subcontractors’ and the customers’ software
development obligations is loose, a situation that causes tardy recogni-
tion of expected delays and leaves no time for the changes and
reorganization necessary to cope with the delays and to limit their neg-
ative effects on the project.

Implementation tip

Purchasing a software package for integration into a newly developed
software system usually entails substantial savings of development
resources, including budgeted funds. This is especially true when the
relevant software has been tested and currently serves a substantial
population of users. In some cases the contractor is persuaded to
purchase a new, supposedly advanced version of an accepted software
package, soon to be put on the market and touted as better suited to
his/her requirements. However, it has become common to discover just a
week or two later that the version’s release is (unexpectedly) delayed —
and repeatedly. More thorough investigation into the status of the new
version, including requests for information from customers, may also reveal
that vital parts — for instance, development of equipment and software
interfaces or an advanced application — have been shifted to a later stage.



(2)

Low quality of project parts supplied by external participants. Quality
problems can be classified as (a) defects: a higher than expected number
of defects, often more severe than expected; and (b) non-standard coding
and documentation: violations of style and structure in instructions and
procedures (supposedly stipulated in any contract). Low quality and
non-standard software are expected to cause difficulties in the testing
phase and later in the maintenance phase. The extra time required to test
and correct low-quality software can cause project delays even in cases
when external participants complete their tasks on time.

Future maintenance difficulties. The fact that several organizations take
part in development but only one of them, the contractor, is directly respon-
sible for the project creates two possibly difficult maintenance situations:

(a) One organization, most probably the contractor, is responsible for
maintenance of the whole project, the arrangement commonly
stipulated in the tender itself. The contractor may then be faced with
incomplete and/or non-standard coding and documentation supplied by
the external participants, causing lower-quality maintenance service
delivered by the maintenance team and higher costs to the contractor.

(b) Maintenance services are supplied by more than one organization,
possibly the subcontractors, suppliers of COTS software and occa-
sionally the customer’s software development department. Each of
these bodies takes limited responsibility, a situation that may force
the customer to search for the body responsible for a specific soft-
ware failure once discovered.

Damages caused by software failures are expected to grow in
“multi-maintainer” situations. Neither of these situations con-
tributes to good and reliable maintenance unless adequate measures
are taken in advance, during the project’s development and mainte-
nance planning phases.

Loss of control over project parts. Whether intentionally or not, the con-
trol of software development by external bodies may produce an
unrealistically optimistic picture of the project’s status. Communication
with external participants’ teams may be interrupted for several weeks,
a situation that prevents assessment of the project’s progress. As a result,
alerts about development difficulties, staff shortages and other problems
reach the contractor belatedly. The possibilities for timely solution of the
difficulties — whether by adaptations or other suitable changes — are
thereby often drastically reduced.

Before entering into these agreements, the contractor must consider the asso-
ciated benefits and risks of introducing external participants in a project.
These are summarized in Frame 12.1.

sjuedioiued jeulalxe SuldNpoIIUL JO S}BUSQ puR SYSIY €71 ‘ §



286

suoninquiuod sjuedpiued jeuialxa Jo Ayjenb ayl Suunssy g1 ‘

m Introduction of external participants: benefits and risks

Benefits Risks
For the contractor: For the contractor and the customer:
1. Budget reductions 1. Delayed completion of the project

caused by delays in completion of
parts supplied by external
participants

2. Remedy of professional staff
shortages
. j h . .
3. Shorter project schedule 2. Low quality of parts supplied by
4. Acquisition of expertise in external participants

eEesllet e 3. Increased probability of

difficulties in maintaining parts

For th . s
GG (B supplied by external participants

participant):
4. Loss of control over development

1. Protecting the customer’s e .
of specific project parts

commercial secrets

2. Provision of employment to internal
software development department

3. Acquisition of project know-how for
self-supplied maintenance

4. Project cost reductions

12.4 Assuring the quality of external participants’
contributions: objectives

What are the objectives to be obtained by application of SQA tools in the
case of parts supplied by external participants? These objectives can be
derived directly from the risks listed in Frame 12.1:

(1) To prevent delays in task completion and to ensure early alert of antici-
pated delays.

(2) To assure acceptable quality levels of the parts developed and receive
early warnings of breaches of quality requirements.

(3) To assure adequate documentation to serve the maintenance team.

(4) To assure continuous, comprehensive and reliable control over external
participants’ performance.



12.5 SQA tools for assuring the quality of external
participants’ contributions

We can expect external participants to operate their own SQA systems that
include the tools necessary for achieving acceptable quality levels for their
own software products and services. The tools mentioned here are those that
contractors can apply vis-a-vis their external participants. For this purpose,
the issues of quality and timetable are the most important to be addressed.

The main SQA tools to be applied before and during incorporation of exter-
nal participants in a software development project are listed in Frame 12.2.

m SQA tools applied to external participants in a software

development project

Requirements document reviews

Evaluation of choice criteria regarding external participants
Establishment of project coordination and joint control committee
Participation in design reviews

Participation in software testing

Formulation of special procedures

Certification of supplier’s team leaders and members

Preparation of progress reports of development activities

Review of deliverables (documents) and acceptance tests

12.5.1 Requirements document reviews

Requirements documents provide the formal basis for the contracts signed
between the contractor and subcontractors as well as for the contract claus-
es dealing with the customer’s obligations to carry out parts of the project.
The requirements document is vital for the examination of proposals pre-
sented by suppliers of COTS software and the subsequent negotiations
regarding their participation. Hence, review of the requirements documents
to be presented to external participants is meant to assure their correctness
and completeness. The principles guiding the review are similar to those of
contract reviews, adjusted to the different role of the contractor in this case
— as the customer.

In general, the requirements documents presented by contractors to
external participants should be correlated with the customer’s requirements.
The main issues to be dealt with in a requirements document are presented
in Table 12.1.

287

syuedidiued jeulaixa woly Aljenb Sulinsse 10j 51001 VDS S°CT ‘



288

suoninquiuod sjuedpiued jeuialxa Jo Ayjenb ayl Suunssy g1 ‘

Table 12.1: Requirements list presented to external participants
Requirements type Requirements subject

Software functionality (1) Functional requirements (related to the customer’s requirements)
(2) Interfaces between the external participant’s part and other parts
of the project
(3) Performance, availability, usability and reliability (related to the
customer’s requirements)
(4) Maintenance services that will be required

Formal and staff (1) Required qualifications of team leaders and members, including

certification where applicable

(2) Establishment of coordination and joint control committee
including procedures for handling complaints and problems

(3) List of documents to be delivered by the external participant

(4) Criteria for completion of external participant’s part

(5) Financial arrangements, including conditions for bonuses and
penalties

SQA (1) Requirements regarding participation in the external participant’s
design reviews
(2) Requirements regarding participation in the external participant’s
software testing

Implementation tip

One of the main surprises encountered by contractors is the revelation that the
subcontractor — without any authorization or prior consent — has subcontracted
his task to another company. Whatever the reason or justification for this step, it
usually leads to a loss of contractor control over project quality, with the
subsequent delays and non-compliance with quality requirements.

Contract clauses dealing with these issues are often inadequate to prevent
such behavior. Improved prospects for elimination of such behavior can be
achieved only by combining stringent contractual clauses with strict
implementation controls.

12.5.2 Choice of external participants

While it is clear that the case of customer participation in a project is dif-
ficult if not impossible to circumscribe or prevent, a good degree of choice
is available with respect to the other external participants: subcontractors
and suppliers of COTS software. General quality assurance procedures,
with the appropriate adaptations, can be applied in this situation as well.
Any choice of external participants requires collection of information
about the candidates, their products and team qualification, and evaluation
of that information.



Collection of information
The main tools that support choice are:

m Contractor’s information about suppliers and subcontractors based on
previous experience with their services

m Auditing the supplier’s or subcontractor’s quality assurance system

m Survey of opinions regarding the external participants from outside sources.

(1) Use of contractor’s internal information about suppliers and subcontrac-
tors. An external participant (subcontractor or supplier) file, that records
past performance, is the main source of information for the contractor.
Such an information system is based on cumulative experience with tasks
performed by the subcontractor or supplier of COTS software, as well as
on information gathered for evaluation of their past proposals.
Implementation of this tool requires systematic reporting, based on SQA
procedures, by the departments involved:

m Teams of committees that evaluate suppliers’ proposals

m User representatives and coordination committee members who are
responsible for project follow-up

m “Regular” users who have identified software faults or have gained
experience with the supplier’s products and maintenance service.

Implementation tip

Two issues impinging on the adequacy of a “Suppliers’ File” should
be considered:

(@ Individuals evaluating a proposal like to receive full documentation
on the organization’s past experience with a prospective
subcontractor/supplier together with information gathered in the past
from various outside sources. Yet, these same individuals are likely to
neglect preparing records related to their own experience with an
external participant.

(b) Difficulties often result from unstructured reporting to the Suppliers’
File. If the information is not properly structured, evaluation and
comparison of suppliers become taxing, if not impossible.

The answer to these difficulties frequently lies in the procedures applied
and forms used. Procedures that define who should report what and in
which situations can limit the reporting burden. A structured reporting
form, supported by unstructured descriptions, can be helpful in
responding to both issues.

289

syuedidiued jeulaixa wol Aljenb Sulinsse 10 51001 VDS S°CT ‘



290

suoninquiuod sjuedpiued jeuialxa Jo Ayjenb ayl Suunssy g1 ‘

(2) Auditing the supplier’s quality system. Auditing the supplier’s SQA sys-
tem is often encouraged by the suppliers themselves in an effort to
promote acceptance of their proposals. In some cases such an audit is
part of the tender requirements. The auditors should take care that the
audited features are relevant to the project in its content, magnitude and
complexity. Another issue to be considered is the demonstration project
and team, which are usually chosen by the supplier. The preferred route
is, of course, for the auditors to randomly choose the project and team
from a list of relevant projects and teams. This approach is, however,
rarely adopted due to objections voiced openly or implicitly by subcon-
tractor and/or supplier.

w

Opinions of regular users of the supplier’s products. Opinions can be
gathered from internal units that used the supplier’s services in the past,
from other organizations that have experienced the supplier’s services in
the past, from professional organizations that certified the supplier as
qualified to specialize in the field, and from firms that have had profes-
sional dealings with the potential subcontractor or supplier. The purpose
of this step is also to ascertain reliability, among other variables that may
affect contractual relations.

Systematic evaluation of the suppliers

Evaluation and comparison of potential external participants should be car-
ried out according to procedures adequate to their purpose. Among the
factors set down in the procedure are designation of the evaluation commit-
tee or responsible manager and the process of evaluation, including the
method for defining the relative importance attached to each item and source
of information.

12.5.3 The project coordination and joint control committee

The scope of this committee’s activities and responsibilities varies in direct
relation to the part the external participant will play in the project.
Naturally, these will be rather limited in the case of purchased COTS soft-
ware or reused software in cases where the required supplier’s support is
minimal and no maintenance is required. Alternatively, substantial coordi-
nation and progress control are demanded when subcontractors are to carry
out major parts of the project.
The committee’s main activities are:

Confirmation of the project timetable and milestones
Follow-up according to project progress reports submitted to the committee

Meeting with team leaders and others in the field in severe situations

Making decisions about solutions to timetable and resource shortage
problems arising during the project that have been identified during
follow-up



B Making decisions regarding solution of problems identified in design
reviews and software tests

m Solving disagreements about contract implementation.

Application of the specific SQA procedure that regulates follow-up of exter-
nal participants’ work activities can be of great help.

12.5.4 Participation in design reviews

The extent to which contractors’ participation is required in subcontractors’
design reviews or customers’ reviews of other development activities depends
on the nature of the project parts provided by the external participants.
When the contractor participates, we can expect him or her to act as a full
member of the review. In other words, he or she will read and review the
documents before the team’s meeting and participate in the team’s discus-
sions as well as in the decision taken at the end of the review.

12.5.5 Participation in software testing

Participation in software testing, when required, should include all the stages
of the testing process: design reviews of the planning and design of the tests,
reviews of the test results, follow-up meetings for the corrections and regres-
sion testing. That is, the character of participation in the testing process is
sufficiently comprehensive to enable the contractor’s representative to inter-
vene, if necessary, to obtain assurance of the quality demanded of the
supplied software and the expected timetable for completion of the testing
(and correction) process.

12.5.6 Specialized procedures

The specialized procedures that regulate SQA activities within the context
of contractual relations with external organizations (i.e., organizations that
are not partners in the project contract) have already been mentioned in
this chapter. These special procedures are usually adaptations of proce-
dures applied in projects that the organization has carried out. Here, these
procedures are mentioned in greater detail. Usually, they are supported by
templates, checklists and forms that attach extra value to the fundamental
procedures. The main objectives of specialized procedures are:

m Preparation of requirements documents for external participants
m Choice of a subcontractor or supplier of COTS software
®  Audit of the subcontractor’s SQA system

m The Suppliers’ File, its sources of information and mode of operation

N
O
-

syuedidiued jeulaixa wol Aljenb Sulinsse 10 51001 VDS S°CT ‘



292

suoninquiuod sjuedpiued jeuialxa Jo Ayjenb ayl Suunssy g1 ‘

® Appointment of the coordination and joint control committee for project
parts to be carried out by external participants and preparation of
instructions for its operation

m Progress reporting requirements for project parts carried out by external
participants.

12.5.7 Certification of external participants’ team leaders and
other staff

Qualification and certification of the external participants’ team leaders and
other staff are intended to ensure an acceptable level of professional work as
required by the project or the customer. This requirement is not to be belit-
tled, for the quality of staff is the heart of any contractual relationship. The
SQA activities required here are:

® Qualification and certification of staff should be listed as a contractual
requirement

® Implementation of these clauses is to be confirmed by the contractor at
the outset of the work

m Changes and replacement of the respective team members are to be
approved by the contractor

® Implementation of these clauses by the contractor is to be periodically
reviewed.

Implementation tip

Subcontractors under pressure from other projects or for other reasons
frequently try to replace qualified and professional certified team members
needed elsewhere with staff who are not fully qualified and/or lack
certification. “Partial” violations — with the team leader or team member
allocating his or her time, without approval, on more than one project — are
also common. The control activities mentioned should deter the subcontractor
from changing staff in this manner and help the contractor quickly identify
violations should they occur.

12.5.8 Progress reports

When external participants share the project’s workload, the main progress
reports prepared for the coordination and joint progress control committee
are as follws:

m Follow-up of the risks identified in the project work. This report
describes the current status of the risks identified in previous reports,
such as shortage of professionals having special expertise, shortage of
equipment, and difficulties in development of a module. For risks still



CASE tools and their effect on
software quality

13.1 What is a CASE tool? 299
13.2 The contribution of CASE tools to software product quality 302
13.3 The contribution of CASE tools to software maintenance quality 304
13.4 The contribution of CASE tools to improved project management 304

Summary 305
Selected bibliography 306
Review questions 306
Topics for discussion 307

An increasing variety of specialized computerized tools (actually software
packages) have been offered to software engineering departments since the
early 1990s. The purpose of these tools is to make the work of development
and maintenance teams more efficient and more effective. Collectively
named CASE (computer-aided software engineering) tools, they offer:

Substantial savings in resources required for software development
Shorter time to market

Substantial savings in resources required for maintenance

Greater reuse due to increased standardization of the software systems
Reduced generation of defects coupled with increased “interactive” iden-
tification of defects during development.

It is clear that this last characteristic is the one most attracting the interest of
software quality analysts to CASE tools.

In light of their characteristics, CASE tools serve as a source for easing
the amount of effort expended on development of increasingly complex and
large software systems.

The following sections will deal with the subjects:

® What is a CASE tool?
m How can CASE tools contribute to the improved quality of
software products?



m How can CASE tools contribute to the improved quality of software
maintenance?

® How and to what extent can CASE tools contribute to maintaining devel-
opment process timetables and keeping with budgets?

After completing this chapter, you will be able to:

m Explain the difference between “classic” and “real” CASE tools and pro-
vide examples of each.

m Explain the contribution of CASE tools to software development.

m List the main contributions of real CASE tools to product quality.

m Explain the contribution of CASE tools to software quality maintenance.

13.1 Whatis a CASE tool?

Frame 13.1 contains the basic definition of a CASE tool.

m CASE tools - definition

CASE tools are computerized software development tools that support the
developer when performing one or more phases of the software life cycle
and/or support software maintenance.

The definition’s generality allows compilers, interactive debugging sys-
tems, configuration management systems and automated testing systems to
be considered as CASE tools. In other words, well-established computerized
software development support tools (such as interactive debuggers, compil-
ers and project progress control systems) can readily be considered classic
CASE tools, whereas the new tools that support the developer for a succes-
sion of several development phases of a development project are referred to
as real CASE tools. When referring to real CASE tools, it is customary to dis-
tinguish between upper CASE tools that support the analysis and design
phases, and lower CASE tools that support the coding phase (where “upper”
and “lower” refer to the location of these phases in the Waterfall Model -
see Section 7.1), and integrated CASE tools that support the analysis, design
and coding phases.

The main component of real CASE tools is the repository that stores all
the information related to the project. The project information accumulates
in the repository as development proceeds and is updated as changes are ini-
tiated during the development phases and maintenance stage. The repository
of the previous development phase serves as a basis for the next phase. The
accumulated development information stored in the repository provides sup-
port for the maintenance stage in which corrective, adaptive and functionality
improvement tasks are performed. The computerized management of the
repository guarantees the information’s consistency and its compliance with
project methodology as well as its standardization according to style and

299

(1001 3Syd estieym 1°el



300

Ayjjenb a1emijos uo 129449 119y} pue Sj00} ISYD €1

structure procedures and work instructions. It follows that CASE tools are
capable of producing full and updated project documentation at any time.
Some lower CASE and integrated CASE tools can automatically generate
code based entirely on the design information stored in the repository.
Reverse engineering (re-engineering) tools are also considered to be real
CASE tools. Based on the system’s code, these tools are applied mainly for
recovery and replication of (now non-existing) design documents for cur-
rently used, well-established software systems (“legacy” software). In other
words, reverse engineering CASE tools operate in the opposite direction of
“regular” CASE tools: instead of creating system code on the basis of design
information, they automatically create complete, updated repository and
design documents on the basis of system code.

Figure 13.1 describes the application of CASE tools in the development
process in comparison to the traditional development process.

The support that CASE tools provide the developer can be in one or
more of the following areas, listed in Table 13.1.

Table 13.1: CASE tools and the support they provide to developers

Type of CASE tool Support provided

Editing and Editing text and diagrams, generating design diagrams according to

diagramming repository records

Repository query Display of parts of the design texts, charts, etc.; cross-referencing
queries and requirement tracing

Automated Automatic generation of requested documentation according to

documentation updated repository records

Design support Editing design recorded by the systems analyst and management of

the data dictionary

Code editing Compiling, interpreting or applying interactive debugging code for
specific coding language or development tools

Code generation Transformation of design records into prototypes or application
software compatible with a given software development language (or
development tools)

Configuration Management of design documents and software code versions, control
management of changes in design and software code*
Software testing Automated testing, load testing and management of testing and

correction records, etc.

Reverse engineering  Construction of a software repository and design documents, based on

(re-engineering) code: the “legacy” software system. Once the repository of the legacy
software is available, it can be updated and used to automatically
generate new versions of the system. As new re-engineered software
version is generated, it can be easily maintained and its documentation
automatically updated

Project management  Support progress control of software development projects by follow-up
and software metrics of schedules and calculation of productivity and defects metrics

* For more about configuration management, see Chapter 18.



System
analyst

\ Installation
team

team

]

v 1

Requirements
determination

Y

Customer’s
requirements
document

Analysis

System
requirements
document

Design

Y

Detailed
design
document

Coding

Y

Program
code files

Testing

Tested
code files

Installation

Y

Installed
code files

Operation and
maintenance

(a) Traditional development life cycle

Figure 13.1: Traditional vs. CASE-supported development life cycle

Requirements

E S ' determination
Customer’s
requirements

\ document

i T Analysis =

] i~

‘ : Upper CASE |«

i System .

© analyst

i Ly Design >

E | Upper CASE |

i_""""""-: > Coding >

. Programmer .

i € Lower CASE |«

PEsscsssmscss Testing o

| —> -

i Tester \e—| CASEtesting |

R ' |i tools ‘

E Installation 5—> Installation

E team l<— <

team

Operation and
maintenance

Upper and lower
CASE tools

Y

<=0 ~+—W0OT M=

(b) Real CASE tool-supported development life cycle

301

(001 3syd estieym 1€l



302

Ayjjenb a1emijos uo 129449 119y} pue Sj00} ISYD €1 ‘

More information about CASE tools can be found in IEEE Std 1462
(IEEE, 1998) and in the software engineering literature, particularly Pressman
(2000), Sommerville (2001) and Kendall and Kendall (1999). The impact of
CASE tools on software quality assurance is discussed by McManus (1999).

13.2 The contribution of CASE tools to software product
quality

CASE tools contribute to software product quality by reducing the number
of errors introduced in each development phase. In order to evaluate this
contribution, we now examine the quality improvements anticipated for
each of the nine causes of software errors listed in Section 2.3. We include
classic and real CASE tools in our evaluation.

Table 13.2 lists the contributions CASE tools can make to quality.

Table 13.2: CASE tools and the quality of software products

Extent and manner of contribution to quality

Cause of software errors Classic CASE tools Real CASE tools
1. Faulty requirements Almost no contribution
definition Computerized examination of

requirements consistency or
correctness is rarely possible.

2. Client—developer Almost no contribution
communication failures In most cases, computerized

identification of
communication failures is
impossible. Communication
failures can be located or
prevented only when a change
or other information is found
to be inconsistent with
repository information.

3. Deliberate deviations High contribution
from software Based on information stored
requirements in the repository, deviations

from recorded requirements
are identified as inconsistent
and labeled as errors. Such
deviations can also be
identified by repository-based
requirements tracing tools
and cross-referenced query
tools.

4. Logical design errors High contribution
(1) Re-engineering enables
automated generation of
the design of legacy
systems and their
recording in a repository.



Table 13.2 continued

Cause of software errors

4. Logical design errors

5. Coding errors

6. Non-compliance with
coding and documentation
instructions

7. Shortcomings in the
testing process

8. Procedural errors

9. Documentation errors

Extent and manner of contribution to quality

Classic CASE tools

Very high contribution
Application of compilers,
interpreters and interactive
debuggers.

Limited contribution

Use of text editors and code
auditing supports the
standardization of structure and
style of texts and code and
facilitates identification of
non-compliance.

High contribution

Automated testing tools
perform full regression and
automated load testing.
Computerized management of
testing and corrections reduces

errors by improvement follow-up.

High contribution

Control of versions, revisions
and software installation by
means of software configuration
management tools.

Limited contribution
Application of text editors only

Real CASE tools

High contribution

(2) Use of the repository is
expected to identify
design omissions,
changes and additions
inconsistent with
repository records.

Very high contribution
Application of lower CASE
tools for automated code
generation achieves full
consistency with the design
recorded in the repository. In
addition, as coding is
automatic, no coding errors
are expected.

Very high contribution
Application of lower CASE
tools for automated code
generation assures full
compliance with
documentation and coding
instructions.

High contribution
Application of lower CASE but
especially of integrated CASE
tools prevents coding errors
and reduces design errors.
Application of repository tools
(cross-referenced queries and
performance consistency
checks) to corrections and
changes during the
development process prevent
most software errors.

Limited contribution

Use of updated and full
documentation is expected to
prevent many of the
maintenance errors caused by
incomplete and/or inaccurate
documentation, especially if
the design has been revised
several times.

High contribution

Use of repository automatically
generates full and updated
documentation prior to each
correction or change.

303

Ayenb 1onpoid a1emyyos 03 51003 ISy JO UOIINGUIU0D BYL T'€T



304

Ayjjenb a1emijos uo 129449 119y} pue Sj00} ISYD €1 ‘

13.3 The contribution of CASE tools to software
maintenance quality

Classic but especially real CASE tools contribute to the various types of soft-
ware maintenance quality in several ways.

Corrective maintenance:

m CASE-generated full and updated documentation of the software enables
easier and more reliable identification of the cause for software failure.

m Cross-referenced queries enable better identification of anticipated effects
of any proposed correction.
m Correction by means of lower CASE or integrated CASE tools provides

automated coding, with no expected coding errors as well as automated
documentation of corrections.

Adaptive maintenance:

m Full and updated documentation of the software by CASE tools enables
thorough examination of possible software package adaptations for new
users and applications.

Functional improvement maintenance:

m Use of the repository enables designers to assure consistency of new
applications and improvements with existing software systems.

m Cross-referenced repository queries enable better planning of changes
and additions.

m Changes and additions carried out by means of lower CASE or integrat-

ed CASE tools enable automated coding, with no expected coding errors
as well as automated documentation of the changes and additions.

13.4 The contribution of CASE tools to improved project
management

Let us compare two projects of similar nature and magnitude: Project A is
carried out by conventional methods, Project B by advanced CASE tools.
The following results were obtained after comparison of the planning and
implementation phases:

Project A Project B
Method of development Conventional tools CASE tools
Planned resources (man-months) 35 20
Actual resources invested 42 27
Planned completion time (months) 15 9

Actual completion time 18 12




