
chapter 1

The software quality challenge

Two basic questions should be raised before we proceed to list the variety of
subjects and details of the book:

(1) Is it justified to devote a special book to software quality assurance (SQA)
or, in other words, can we not use the general quality assurance textbooks
available that are applicable to numerous areas and industries?

(2) Having decided to develop specialized books for software quality assur-
ance, at which of the various environments of software development, from
amateurs’ hobby to professionals’ work, should we aim our main efforts?
Put simply, what are the unique characteristics of the SQA environment?

The objective of this chapter is to answer these questions by exploring the
related issues.

After completing this chapter, you will be able to:

■ Identify the unique characteristics of software as a product and as pro-
duction process that justify separate treatment of its quality issues.

■ Recognize the characteristics of the environment where professional soft-
ware development and maintenance take place.

■ Explain the main environmental difficulties faced by software develop-
ment and maintenance teams as a result of the environment in which
they operate.

Chapter outline

1.1 The uniqueness of software quality assurance 4
1.2 The environments for which SQA methods are developed 7

Summary 11
Review questions 12
Topics for discussion 12

1.1 The uniqueness of software quality assurance

“Look at this,” shouted my friend while handing me Dagal Features’s
Limited Warranty leaflet. “Even Dagal Features can’t cope with software
bugs.” He pointed to a short paragraph on page 3 of the leaflet that states
the conditions of the warranty for AMGAL, a leading Software Master product
sold all over the world. The leaflet states the following:

LIMITED WARRANTY
Dagal Features provides no warranty, either expressed or implied, with
respect to AMGAL’s performance, reliability or fitness for any specified
purpose. Dagal Features does not warrant that the software or its docu-
mentation will fulfil your requirements. although Dagal Features has
performed thorough tests of the software and reviewed the documenta-
tion, Dagal Features does not provide any warranty that the software and
its documentation are free of errors. Dagal Features will in no case be
liable for any damages, incidental, direct, indirect or consequential,
incurred as a result of impaired data, recovery costs, profit loss and third
party claims. the software is licensed “as is”. the purchaser assumes the
complete risk stemming from application of the AMGAL program, its
quality and performance.

If physical defects are discovered in the documentation or the CD on
which AMGAL is distributed, Dagal Features will replace, at no charge,
the documentation or the CD within 180 days of purchase, provided
proof of purchase is presented.

“Is the AMGAL software really so special that its developers are incapable
of meeting the challenge of assuring a bug-free product?” continued my
friend. “Do other software packages limit their warranties in the same way?”

Though Dagal Features and AMGAL are fictitious, an examination of
the warranties offered by other software developers reveals a similar pattern.
No developer will declare that its software is free of defects, as major man-
ufacturers of computer hardware are wont to do. This refusal actually
reflects the essential elemental differences between software and other industrial
products, such as automobiles, washing machines or radios. These differ-
ences can be categorized as follows:

(1) Product complexity. Product complexity can be measured by the num-
ber of operational modes the product permits. An industrial product,
even an advanced machine, does not allow for more than a few thou-
sand modes of operation, created by the combinations of its different
machine settings. Looking at a typical software package one can find
millions of software operation possibilities. Assuring that the multitude
of operational possibilities is correctly defined and developed is a major
challenge to the software industry.

4

1
The softw

are quality
challenge

(2) Product visibility. Whereas the industrial products are visible, software
products are invisible. Most of the defects in an industrial product can be
detected during the manufacturing process. Moreover the absence of a
part in an industrial product is, as a rule, highly visible (imagine a door
missing from your new car). However, defects in software products
(whether stored on diskettes or CDs) are invisible, as is the fact that parts
of a software package may be absent from the beginning.

(3) Product development and production process. Let us now review the
phases at which the possibility of detecting defects in an industrial prod-
uct may arise:

(a) Product development. In this phase the designers and quality assur-
ance (QA) staff check and test the product prototype, in order to
detect its defects.

(b) Product production planning. During this phase the production
process and tools are designed and prepared. In some products there
is a need for a special production line to be designed and built. This
phase thus provides additional opportunities to inspect the product,
which may reveal defects that “escaped” the reviews and tests con-
ducted during the development phase.

(c) Manufacturing. At this phase QA procedures are applied to detect
failures of products themselves. Defects in the product detected in the
first period of manufacturing can usually be corrected by a change in
the product’s design or materials or in the production tools, in a way
that eliminates such defects in products manufactured in the future.

In comparison to industrial products, software products do not benefit
from the opportunities for detection of defects at all three phases of the
production process. The only phase when defects can be detected is the
development phase. Let us review what each phase contributes to the
detection of defects:

(a) Product development. During this phase, efforts of the development
teams and software quality assurance professionals are directed
toward detecting inherent product defects. At the end of this phase
an approved prototype, ready for reproduction, becomes available.

(b) Product production planning. This phase is not required for the soft-
ware production process, as the manufacturing of software copies
and printing of software manuals are conducted automatically. This
applies to any software product, whether the number of copies is
small, as in custom-made software, or large, as in software packages
sold to the general public.

(c) Manufacturing. As mentioned previously, the manufacturing of
software is limited to copying the product and printing copies of the
software manuals. Consequently, expectations for detecting defects
are quite limited during this phase.

5

1.1 The uniqueness
ofsoftw

are quality
assurance

The differences affecting the detection of defects in software products versus
other industrial products are shown in Table 1.1 and Frame 1.1.

It should be noted that significant parts of advanced machinery as well
as of household machines and other products include embedded software
components (usually termed “firmware”) that are integrated into the prod-
uct. These software components (the firmware) share the same
characteristics of the software products mentioned above. It follows that the
comparison shown above should actually be that of software products ver-
sus other industrial products and non-software components of industrial
products that include firmware. Hereinafter, when mentioning software, we
will mean software products as well as firmware.

The fundamental differences between the development and production
processes related to software products and those of other industrial products
warrant the creation of a different SQA methodology for software. The need
for special tools and methods for the software industry is reflected in the pro-
fessional publications as well in special standards devoted to SQA, such as
ISO 9000-3, “Guidelines for the application of ISO 9001 to the develop-
ment, supply and maintenance of software”. This point is supported by the fact
that targeted guidelines have not been prepared by ISO for other industries,

6

1
The softw

are quality
challenge

Table 1.1: Factors affecting defect detection in software products vs. other industrial products

Characteristic Software products Other industrial products

Complexity Usually, very complex product Degree of complexity much
allowing for very large number lower, allowing at most a few
of operational options thousand operational options

Visibility of product Invisible product, impossible Visible product, allowing
to detect defects or omissions effective detection of defects
by sight (e.g. of a diskette or by sight
CD storing the software)

Nature of development Opportunities to detect defects Opportunities to detect
and production process arise in only one phase, defects arise in all phases of

namely product development development and production:
■ Product development
■ Product production

planning
■ Manufacturing

Frame 1.1 The uniqueness of the software development process

■ High complexity, as compared to other industrial products

■ Invisibility of the product

■ Opportunities to detect defects (“bugs”) are limited to the product
development phase

and the only other targeted guidelines have been prepared for services (ISO
9004-2, “Quality management and quality systems elements: Guidelines for
the services”).

The great complexity as well as invisibility of software, among other
product characteristics, make the development of SQA methodology and its
successful implementation a highly professional challenge.

1.2 The environments for which SQA methods are
developed

The software developed by many individuals and in different situations ful-
fills a variety of needs:

■ Pupils and students develop software as part of their education.

■ Software amateurs develop software as a hobby.

■ Professionals in engineering, economics, management and other fields
develop software to assist them in their work, to perform calculations,
summarize research and survey activities, and so forth.

■ Software development professionals (systems analysts and programmers)
develop software products or firmware as a professional career objective
while in the employment of software houses or by software development
and maintenance units (teams, departments, etc.) of large and small
industrial, financial and other organizations.

All those who participate in these activities are required to deal with soft-
ware quality problems (“bugs”). However, quality problems in their most
severe form govern the professional software development.

This book is devoted, therefore, to defining and solving many of the soft-
ware quality assurance (SQA) problems confronted by software development
and maintenance professionals. However, all other types of software devel-
opers can find portions of the book applicable to and recommended for their
own software development efforts.

Let us begin with the examination of the environment of professional soft-
ware development and maintenance (hereafter “the SQA environment”), as it
is a major consideration in the development of SQA methodologies and their
implementation. The main characteristics of this environment are as follows:

(1) Contractual conditions. As a result of the commitments and conditions
defined in the contract between the software developer and the customer,
the activities of software development and maintenance need to cope with:

■ A defined list of functional requirements that the developed software
and its maintenance need to fulfill.

■ The project budget.
■ The project timetable.

7

1.2 The environm
ents

for w
hich SQ

A
 m

ethods
are developed

The managers of software development and maintenance projects need
to invest a considerable amount of effort in the oversight of activities in
order to meet the contract’s requirements.

(2) Subjection to customer–supplier relationship. Throughout the process of
software development and maintenance, activities are under the over-
sight of the customer. The project team has to cooperate continuously
with the customer: to consider his request for changes, to discuss his crit-
icisms about the various aspects of the project, and to get his approval
for changes initiated by the development team. Such relationships do not
usually exist when software is developed by non-software professionals.

(3) Required teamwork. Three factors usually motivate the establishment of
a project team rather than assigning the project to one professional:

■ Timetable requirements. In other words, the workload undertaken
during the project period requires the participation of more than one
person if the project is to be completed on time.

■ The need for a variety of specializations in order to carry out the project.
■ The wish to benefit from professional mutual support and review for

the enhancement of project quality.

(4) Cooperation and coordination with other software teams. The carrying-
out of projects, especially large-scale projects, by more than one team is
a very common event in the software industry. In these cases, coopera-
tion may be required with:

■ Other software development teams in the same organization.
■ Hardware development teams in the same organization.
■ Software and hardware development teams of other suppliers.
■ Customer software and hardware development teams that take part

in the project’s development.

An outline of cooperation needs, as seen from the perspective of the
development team, is shown in Figure 1.1.

(5) Interfaces with other software systems. Nowadays, most software sys-
tems include interfaces with other software packages. These interfaces
allow data in electronic form to flow between the software systems, free
from keying in of data processed by the other software systems. One can
identify the following main types of interfaces:

■ Input interfaces, where other software systems transmit data to your
software system.

■ Output interfaces, where your software system transmits processed
data to other software systems.

■ Input and output interfaces to the machine’s control board, as in med-
ical and laboratory control systems, metal processing equipment, etc.

Salary processing software packages provide good examples of typical
input and output interfaces to other software packages – see Figure 1.2.
First let us look at the input interface. In order to calculate salaries, one
needs the employees’ attendance information, as captured by the time

8

1
The softw

are quality
challenge

clocks placed at the entrance to the office building and processed later
by the attendance control software system. Once a month, this informa-
tion (the attendance lists including the overtime data) is transmitted
electronically from the attendance control system to the salary process-
ing system. This information transmission represents an input interface
for the salary processing software system; at the same time it represents
an output interface to the attendance control system. Now, let us examine
the output interface of our system. One of the outputs of the salary
processing system is the list of “net” salaries, after deduction of the
income tax and other items, payable to the employees. This list, including
the employees’ bank account details, has to be sent to the banks. The
transmission of the list of salary payments is done electronically, repre-
senting an output interface for the salary processing system and an input
interface for the bank’s account system.

9

1.2 The environm
ents

for w
hich SQ

A
 m

ethods
are developed

Our software
development

team

Hardware
development

team
Software

development
team

Software
development

team

Other
supplier’s

development
team

Customer’s
development

team

Other
supplier’s

development
team

Other
supplier’s

development
team

Software
development
organization

Cooperation and
coordination

Other
supplier’s

development
team

Figure 1.1: A cooperation and coordination scheme for a software development team of a large-
scale project

(6) The need to continue carrying out a project despite team member
changes. It is quite common for team members to leave the team during
the project development period, whether owing to promotions to higher
level jobs, a switch in employers, transfers to another city, and so forth.
The team leader then has to replace the departing team member either
by another employee or by a newly recruited employee. No matter how
much effort is invested in training the new team member, “the show
must go on”, which means that the original project contract timetable
will not change.

(7) The need to continue carrying out software maintenance for an extend-
ed period. Customers who develop or purchase a software system expect
to continue utilizing it for a long period, usually for 5–10 years. During
the service period, the need for maintenance will eventually arise. In
most cases, the developer is required to supply these services directly.
Internal “customers”, in cases where the software has been developed
in-house, share the same expectation regarding the software mainte-
nance during the service period of the software system.

The environmental characteristics create a need for intensive and continuous
managerial efforts parallel to the professional efforts that have to be invest-
ed in order to assure the project’s quality, in other words to assure the
project’s success.

A summary of the main characteristics of the SQA environment is shown
in Frame 1.2.

A significant amount of software as well as firmware development is not
carried out subject to formal contracts or formal customer–supplier rela-
tionships, as mentioned in the first two SQA environment characteristics. This
type of activity usually concerns software developed in-house for internal use

10

1
The softw

are quality
challenge

Attendance
control
system

Monthly attendance report, including overtime calculationsInput Interface

Salary
processing

system

Money transfers to employees’ bank accountsOutput Interface

Bank
information

system

Figure 1.2: The salary software system – an example of software interfaces

chapter 3

Software quality factors

We have already established (see Chapter 2) that the requirements document
is one of the most important elements for achieving software quality. Here we
ask: What is a “good” software requirements document? We want to explore
what subjects and aspects of software use should be covered in the document.

This chapter is, therefore, dedicated to the review of the wide spectrum
of aspects of software use that may be operative throughout the life cycle of
software systems. Some SQA models suggest that the wide spectrum of
requirements should be classified into 11 to 15 factors (subject areas) that
can be amalgamated into three or four categories.

After completing this chapter, you will be able to:

■ Explain the need for comprehensive requirements documents and char-
acterize the contents of such documents.

■ Explain the structure (categories and factors) of McCall’s classic factor
model.

Chapter outline

3.1 The need for comprehensive software quality requirements 36
3.2 Classifications of software requirements into software

quality factors 37
3.3 Product operation software quality factors 38
3.4 Product revision software quality factors 41
3.5 Product transition software quality factors 43
3.6 Alternative models of software quality factors 44

3.6.1 Formal comparison of the alternative models 44
3.6.2 Comparison of the factor models – content analysis 46
3.6.3 Structure of the alternative factor models 47

3.7 Who is interested in the definition of quality requirements? 47
3.8 Software compliance with quality factors 49

Summary 51
Selected bibliography 52
Review questions 52
Topics for discussion 54

■ List the factors, other than those included in McCall’s model, that are
suggested by the alternative SQA models.

■ Identify who is interested in the definition of quality requirements.

3.1 The need for comprehensive software quality
requirements

■ “Our new sales information system seems okay, the invoices are correct,
the inventory records are correct, the discounts granted to our clients
exactly follow our very complicated discount policy, but our new sales
information system frequently fails, usually at least twice a day, each time
for twenty minutes or more. Yesterday it took an hour and half before we
could get back to work Imagine how embarrassing it is to store
managers Softbest, the software house that developed our comput-
erized sales system, claims no responsibility”

■ “Just half a year ago we launched our new product – the radar detector.
The firmware RD-8.1, embedded in this product, seems to be the cause for
its success. But, when we began planning the development of a European
version of the product, we found out that though the products will be
almost similar, our software development department needs to develop
new firmware; almost all the design and programming will be new.”

■ “Believe it or not, our software package ‘Blackboard’ for schoolteachers,
launched just three months ago, is already installed in 187 schools. The
development team just returned from a week in Hawaii, their vacation
bonus. But we have been suddenly receiving daily complaints from the
‘Blackboard’ maintenance team. They claim that the lack of failure-
detection features in the software, in addition to the poor programmer’s
manual, have caused them to invest more than the time estimated to deal
with bugs or adding minor software changes that were agreed as part of
purchasing contracts with clients.”

■ “The new version of our loan contract software is really accurate. We
have already processed 1200 customer requests, and checked each of the
output contracts. There were no errors. But we did face a severe unex-
pected problem – training a new staff member to use this software takes
about two weeks. This is a real problem in customers’ departments suf-
fering from high employee turnover The project team says that as
they were not required to deal with training issues in time, an additional
two to three months of work will be required to solve the problem.”

There are some characteristic common to all these “but’s”:

■ All the software projects satisfactorily fulfilled the basic requirements for
correct calculations (correct inventory figures, correct average class’s
score, correct loan interest, etc.).

■ All the software projects suffered from poor performance in important
areas such as maintenance, reliability, software reuse, or training.

36

3
S

oftw
are quality

factors

■ The cause for the poor performance of the developed software projects in
these areas was the lack of predefined requirements to cover these impor-
tant aspects of the software’s functionality.

The need for a comprehensive definition of requirements
There is a need for a comprehensive definition of requirements that will
cover all attributes of software and aspects of the use of software, including
usability aspects, reusability aspects, maintainability aspects, and so forth in
order to assure the full satisfaction of the users.

The great variety of issues related to the various attributes of software
and its use and maintenance, as defined in software requirements documents,
can be classified into content groups called quality factors. We expect the
team responsible for defining the software requirements of a software system
to examine the need to define the requirements that belong to each factor.
Software requirement documents are expected to differ in the emphasis
placed on the various factors, a reflection of the differences to be found
among software projects. Thus, we can expect that not all the factors will be
universally “represented” in all the requirements documents.

The next sections deal with the classification of quality requirements
into quality factors. Obviously, only the major approaches to this topic will
be covered.

3.2 Classifications of software requirements into software
quality factors

Several models of software quality factors and their categorization in factor
categories have been suggested over the years. The classic model of software
quality factors, suggested by McCall, consists of 11 factors (McCall et al.,
1977). Subsequent models, consisting of 12 to 15 factors, were suggested by
Deutsch and Willis (1988) and by Evans and Marciniak (1987). The alter-
native models do not differ substantially from McCall’s model. The McCall
factor model, despite the quarter of a century of its “maturation”, continues
to provide a practical, up-to-date method for classifying software require-
ments (Pressman, 2000).

McCall’s factor model
McCall’s factor model classifies all software requirements into 11 software
quality factors. The 11 factors are grouped into three categories – product
operation, product revision and product transition – as follows:

■ Product operation factors: Correctness, Reliability, Efficiency, Integrity,
Usability.

■ Product revision factors: Maintainability, Flexibility, Testability.
■ Product transition factors: Portability, Reusability, Interoperability.

37

3.2 Classifications
ofsoftw

are requirem
ents

into softw
are quality

factors

McCall’s model and its categories are illustrated by the McCall model of
software quality factors tree (see Figure 3.1).

The next three sections are dedicated to a detailed description of the
software quality factors included in each of McCall’s categories.

3.3 Product operation software quality factors

According to McCall’s model, five software quality factors are included in the
product operation category, all of which deal with requirements that directly
affect the daily operation of the software. These factors are as follows.

Correctness
Correctness requirements are defined in a list of the software system’s
required outputs, such as a query display of a customer’s balance in the sales
accounting information system, or the air supply as a function of temperature
specified by the firmware of an industrial control unit. Output specifications
are usually multidimensional; some common dimensions include:

■ The output mission (e.g., sales invoice printout, and red alarms when
temperature rises above 250°F).

38

3
S

oftw
are quality

factors

Pr
od

uc
t

op
er

at
io

n

Product

transition

Reusability

Portability

In
te

ro
pe

ra
bi

lit
y

Productrevision

Flexibility

Maintainability

Testability

Ef
fic

ie
nc

y

Re
lia

bi
lit

yCorre
ctness

Integrity

Usability

Quality software

Figure 3.1: McCall’s factor model tree

Source: Based on McCall et al., 1977

■ The required accuracy of those outputs that can be adversely affected by
inaccurate data or inaccurate calculations.

■ The completeness of the output information, which can be adversely
affected by incomplete data.

■ The up-to-dateness of the information (defined as the time between the
event and its consideration by the software system).

■ The availability of the information (the reaction time, defined as the time
needed to obtain the requested information or as the requested reaction
time of the firmware installed in a computerized apparatus).

■ The standards for coding and documenting the software system.

Example
The correctness requirements of a club membership information system
consisted of the following:

■ The output mission: A defined list of 11 types of reports, four types of
standard letters to members and eight types of queries, which were to be
displayed on the monitor on request.

■ The required accuracy of the outputs: The probability for a non-accurate
output, containing one or more mistakes, will not exceed 1%.

■ The completeness of the output information: The probability of missing
data about a member, his attendance at club events, and his payments will
not exceed 1%.

■ The up-to-dateness of the information: Not more than two working days
for information about participation in events and not more than one
working day for information about entry of member payments and per-
sonal data.

■ The availability of information: Reaction time for queries will be less
than two seconds on average; the reaction time for reports will be less
than four hours.

■ The required standards and guidelines: The software and its documenta-
tion are required to comply with the client’s guidelines.

Reliability
Reliability requirements deal with failures to provide service. They determine
the maximum allowed software system failure rate, and can refer to the
entire system or to one or more of its separate functions.

Examples
(1) The failure frequency of a heart-monitoring unit that will operate in a

hospital’s intensive care ward is required to be less than one in 20 years.
Its heart attack detection function is required to have a failure rate of
less than one per million cases.

39

3.3 Productoperation softw
are quality

factors

(2) One requirement of the new software system to be installed in the main
branch of Independence Bank, which operates 120 branches, is that it
will not fail, on average, more than 10 minutes per month during the
bank’s office hours. In addition, the probability that the off-time (the
time needed for repair and recovery of all the bank’s services) be more
than 30 minutes is required to be less than 0.5%.

Efficiency
Efficiency requirements deal with the hardware resources needed to perform
all the functions of the software system in conformance to all other require-
ments. The main hardware resources to be considered are the computer’s
processing capabilities (measured in MIPS – million instructions per second,
MHz or megahertz – million cycles per second, etc.), its data storage capa-
bility in terms of memory and disk capacity (measured in MBs – megabytes,
GBs – gigabytes, TBs – terabytes, etc.) and the data communication capabil-
ity of the communication lines (usually measured in KBPS – kilobits per
second, MBPS – megabits per second, and GBPS – gigabits per second). The
requirements may include the maximum values at which the hardware
resources will be applied in the developed software system or the firmware.

Another type of efficiency requirement deals with the time between
recharging of the system’s portable units, such as, information systems units
located in portable computers, or meteorological units placed outdoors.

Examples
(1) A chain of stores is considering two alternative bids for a software sys-

tem. Both bids consist of placing the same computers in the chain’s
headquarters and its branches. The bids differ solely in the storage vol-
ume: 20 GB per branch computer and 100 GB in the head office
computer (Bid A); 10 GB per branch computer and 30 GB in the head
office computer (Bid B). There is also a difference in the number of com-
munication lines required: Bid A consists of three communication lines
of 28.8 KBPS between each branch and the head office, whereas Bid B
is based on two communication lines of the same capacity between each
branch and the head office. In this case, it is clear that Bid B is more effi-
cient than Bid A because fewer hardware resources are required.

(2) An outdoor meteorological unit, equipped with a 1000 milli-ampere
hour cell, should be capable of supplying the power requirements of the
unit for at least 30 days. The system performs measurements once per
hour, logs the results, and transmits the results once a day to the mete-
orological center by means of wireless communication.

Integrity
Integrity requirements deal with the software system security, that is, require-
ments to prevent access to unauthorized persons, to distinguish between the
majority of personnel allowed to see the information (“read permit”) and a

40

3
S

oftw
are quality

factors

limited group who will be allowed to add and change data (“write permit”),
and so forth.

Example
The Engineering Department of a local municipality operates a GIS
(Geographic Information System). The Department is planning to allow cit-
izens access to its GIS files through the Internet. The software requirements
include the possibility of viewing and copying but not inserting changes in
the maps of their assets as well as any other asset in the municipality’s area
(“read only” permit). Access will be denied to plans in progress and to those
maps defined by the Department’s head as limited access documents.

Usability
Usability requirements deal with the scope of staff resources needed to train
a new employee and to operate the software system. For more about usabil-
ity see Juristo et al. (2001), Donahue (2001) and Ferre et al. (2001).

Example
The software usability requirements document for the new help desk
system initiated by a home appliance service company lists the following
specifications:

(a) A staff member should be able to handle at least 60 service calls a day.

(b) Training a new employee will take no more than two days (16 training
hours), immediately at the end of which the trainee will be able to han-
dle 45 service calls a day.

3.4 Product revision software quality factors

According to the McCall model of software quality factors, three quality fac-
tors comprise the product revision category. These factors deal with those
requirements that affect the complete range of software maintenance activi-
ties: corrective maintenance (correction of software faults and failures),
adaptive maintenance (adapting the current software to additional circum-
stances and customers without changing the software) and perfective
maintenance (enhancement and improvement of existing software with
respect to locally limited issues). These are as follows.

Maintainability
Maintainability requirements determine the efforts that will be needed by
users and maintenance personnel to identify the reasons for software fail-
ures, to correct the failures, and to verify the success of the corrections. This
factor’s requirements refer to the modular structure of software, the internal
program documentation, and the programmer’s manual, among other items.

41

3.4 Productrevision softw
are quality

factors

Example
Typical maintainability requirements:

(a) The size of a software module will not exceed 30 statements.

(b) The programming will adhere to the company coding standards and
guidelines.

Flexibility
The capabilities and efforts required to support adaptive maintenance activ-
ities are covered by the flexibility requirements. These include the resources
(i.e. in man-days) required to adapt a software package to a variety of cus-
tomers of the same trade, of various extents of activities, of different ranges
of products and so on. This factor’s requirements also support perfective
maintenance activities, such as changes and additions to the software in
order to improve its service and to adapt it to changes in the firm’s technical
or commercial environment.

Example
TSS (teacher support software) deals with the documentation of pupil achieve-
ments, the calculation of final grades, the printing of term grade documents,
and the automatic printing of warning letters to parents of failing pupils. The
software specifications included the following flexibility requirements:

(a) The software should be suitable for teachers of all subjects and all school
levels (elementary, junior and high schools).

(b) Non-professionals should be able to create new types of reports accord-
ing to the schoolteacher’s requirements and/or the city’s education
department demands.

Testability
Testability requirements deal with the testing of an information system as
well as with its operation. Testability requirements for the ease of testing are
related to special features in the programs that help the tester, for instance by
providing predefined intermediate results and log files. Testability require-
ments related to software operation include automatic diagnostics performed
by the software system prior to starting the system, to find out whether all
components of the software system are in working order and to obtain a
report about the detected faults. Another type of these requirements deals
with automatic diagnostic checks applied by the maintenance technicians to
detect the causes of software failures.

Example
An industrial computerized control unit is programmed to calculate various
measures of production status, report the performance level of the machin-
ery, and operate a warning signal in predefined situations. One testability

42

3
S

oftw
are quality

factors

requirement demanded was to develop a set of standard test data with
known system expected correct reactions in each stage. This standard test
data is to be run every morning, before production begins, to check whether
the computerized unit reacts properly.

3.5 Product transition software quality factors

According to McCall, three quality factors are included in the product tran-
sition category, a category that pertains to the adaptation of software to
other environments and its interaction with other software systems.

Portability
Portability requirements tend to the adaptation of a software system to other
environments consisting of different hardware, different operating systems,
and so forth. These requirements make it possible to continue using the same
basic software in diverse situations or to use it simultaneously in diverse
hardware and operating systems situations.

Example
A software package designed and programmed to operate in a Windows
2000 environment is required to allow low-cost transfer to Linux and
Windows NT environments.

Reusability
Reusability requirements deal with the use of software modules originally
designed for one project in a new software project currently being developed.
They may also enable future projects to make use of a given module or a group
of modules of the currently developed software. The reuse of software is
expected to save development resources, shorten the development period, and
provide higher quality modules. These benefits of higher quality are based on
the assumption that most of the software faults have already been detected by
the quality assurance activities performed on the original software, by users of
the original software, and during its earlier reuses. The issues of software reuse
became a subject of software industry standards (see IEEE, 1999).

Example
A software development unit has been required to develop a software system
for the operation and control of a hotel swimming pool that serves hotel
guests and members of a pool club. Although the management did not define
any reusability requirements, the unit’s team leader, after analyzing the infor-
mation processing requirements of the hotel’s spa, decided to add the
reusability requirement that some of the software modules for the pool
should be designed and programmed in a way that will allow its reuse in the
spa’s future software system, which is planned to be developed next year.

43

3.5 Producttransition softw
are quality

factors

These modules will allow:

■ Entrance validity checks of membership cards and visit recording.
■ Restaurant billing.
■ Processing of membership renewal letters.

Interoperability
Interoperability requirements focus on creating interfaces with other soft-
ware systems or with other equipment firmware (for example, the firmware
of the production machinery and testing equipment interfaces with the pro-
duction control software). Interoperability requirements can specify the
name(s) of the software or firmware for which interface is required. They can
also specify the output structure accepted as standard in a specific industry
or applications area.

Example
The firmware of a medical laboratory’s equipment is required to process its
results (output) according to a standard data structure that can then serve as
input for a number of standard laboratory information systems.

3.6 Alternative models of software quality factors

Two factor models, appearing during the late 1980s, considered to be
alternatives to the McCall classic factor model (McCall et al., 1977),
deserve discussion:

■ The Evans and Marciniak factor model (Evans and Marciniak, 1987).
■ The Deutsch and Willis factor model (Deutsch and Willis, 1988).

3.6.1 Formal comparison of the alternative models

A formal comparison of the factor models reveals:

■ Both alternative models exclude only one of McCall’s 11 factors, namely
the testability factor.

■ The Evans and Marciniak factor model consists of 12 factors that are
classified into three categories.

■ The Deutsch and Willis factor model consists of 15 factors that are clas-
sified into four categories.

Taken together, five new factors were suggested by the two alternative factor
models:

■ Verifiability (by both models)
■ Expandability (by both models)

44

3
S

oftw
are quality

factors

■ Safety (by Deutsch and Willis)
■ Manageability (by Deutsch and Willis)
■ Survivability (by Deutsch and Willis).

The factors included in the various factor models are compared in Table 3.1.
The additional factors are defined as follows.

Verifiability (suggested by Evans and Marciniak)
Verifiability requirements define design and programming features that
enable efficient verification of the design and programming. Most verifiabil-
ity requirements refer to modularity, to simplicity, and to adherence to
documentation and programming guidelines.

Expandability (suggested by Evans and Marciniak, and Deutsch
and Willis)
Expandability requirements refer to future efforts that will be needed to
serve larger populations, improve service, or add new applications in order
to improve usability. The majority of these requirements are covered by
McCall’s flexibility factor.

Safety (suggested by Deutsch and Willis)
Safety requirements are meant to eliminate conditions hazardous to opera-
tors of equipment as a result of errors in process control software. These
errors can result in inappropriate reactions to dangerous situations or to the
failure to provide alarm signals when the dangerous conditions to be detect-
ed by the software arise.

45

3.6 A
lternative m

odels
ofsoftw

are quality
factors

Table 3.1: Comparison of McCall’s factor model and alternative models

Alternative factor models

Software quality McCall’s classic Evans and Deutsch and
No. factor model Marciniak Willis

1 Correctness + + +
2 Reliability + + +
3 Efficiency + + +
4 Integrity + + +
5 Usability + + +
6 Maintainability + + +
7 Flexibility + + +
8 Testability +
9 Portability + + +

10 Reusability + + +
11 Interoperability + + +
12 Verifiability + +
13 Expandability + +
14 Safety +
15 Manageability +
16 Survivability +

Example
In a chemical plant, a computerized system controls the flow of acid accord-
ing to pressure and temperature changes occurring during production. The
safety requirements refer to the system’s computerized reactions in cases of
dangerous situations and also specify what kinds of alarms are needed in
each case.

Manageability (suggested by Deutsch and Willis)
Manageability requirements refer to the administrative tools that support
software modification during the software development and maintenance
periods, such as configuration management, software change procedures,
and the like.

Example
“Chemilog” is a software system that automatically logs the flows of chem-
icals into various containers to allow for later analysis of the efficiency of
production units. The development and issue of new versions and releases of
“Chemilog” are controlled by the Software Development Board, whose
members act according to the company’s software modifications procedure.

Survivability (suggested by Deutsch and Willis)
Survivability requirements refer to the continuity of service. These define the
minimum time allowed between failures of the system, and the maximum
time permitted for recovery of service, two factors that pertain to service
continuity. Although these requirements may refer separately to total and to
partial failures of services, they are especially geared to failures of essential
functions or services. Significant similarity exists between the survivability
factor and the reliability factor described in McCall’s model.

Example
Taya operates a national lottery, held once a week. About 400000 to 700000
bets are placed weekly. The new software system the customer (the Taya
National Lottery) has ordered will be highly computerized and based on a
communication system that connects all the betting machines to the central
computer. To its other high reliability requirements, Taya has added the fol-
lowing survivability requirement: The probability that unrecoverable damage
to the betting files will occur in case of any system failure is to be limited to
less than one in a million.

3.6.2 Comparison of the factor models – content analysis

After comparing the contents of the factor models, we find that two of the
five additional factors, Expandability and Survivability, actually resemble
factors already included in McCall’s factor model, though under different
names, Flexibility and Reliability. In addition, McCall’s Testability factor can
be considered as one element in his own Maintainability factor.

46

3
S

oftw
are quality

factors

This implies that the differences between the three factor models are
much smaller than initially perceived. That is, the alternative factor models
add only three “new” factors to McCall’s model:

■ Both models add the factor Verifiability.
■ The Deutsch and Willis model adds the factors Safety and Manageability.

3.6.3 Structure of the alternative factor models

Nevertheless, despite their similarities, the categories employed by the alter-
native factor models and the classification of the specific factors into these
categories differ from those offered by McCall’s model. Table 3.2 compares
the structure of the three models according to the factors and their classifi-
cation into the categories.

3.7 Who is interested in the definition of quality
requirements?

Naturally, one might think that only the client is interested in thoroughly
defining his requirements in order to assure the quality of the software prod-
uct he contracted. The requirements document he prepares does indeed serve
as a fundamental protection against low quality. However, our analysis of
the various quality factors indicates how the software developer can add
requirements that represent his own interest. Following are some examples:

(1) Reusability requirements. In cases where the client anticipates develop-
ment in the near future of an additional software system having strong
similarities to the present software, the client will himself initiate reusabil-
ity requirements. In other cases, the client is interested in reusing parts of
software systems that were developed earlier in a new system. However,
it is more likely that the developer, who serves a great variety of clients,
will recognize the potential benefits of reuse, and will enter reusability
into the list of requirements to be fulfilled by the project team.

(2) Verifiability requirements. These requirements are meant to improve the
design reviews and software tests carried out during software develop-
ment. Their aim is to save development resources and they are,
therefore, of interest to developers. The client, however, is usually unin-
terested in placing requirements that deal with the internal activities of
the developer team.

Some quality factors not included in the typical client’s requirements docu-
ment may, in many cases, interest the developer. The following list of quality
factors usually interest the developer whereas they may raise very little inter-
est on the part of the client:

■ Portability
■ Reusability
■ Verifiability.

47

3.7 W
ho is

interested in the definition ofquality
requirem

ents?

48

3
S

oftw
are quality

factors

Ta
bl

e
3.

2:
Co

m
pa

ri
so

n
of

th
e

st
ru

ct
ur

e
of

M
cC

al
l’s

fa
ct

or
 m

od
el

vi
s-

à-
vi

s
th

e
th

re
e

al
te

rn
at

iv
e

m
od

el
s

D
eu

ts
ch

 a
nd

 W
ill

is
m

od
el

ca
te

go
ri

es
Ev

an
s

an
d

M
ar

ci
ni

ak
m

od
el

ca
te

go
ri

es

M
cC

al
l’s

m
od

el
S

of
tw

ar
e

qu
al

it
y

ca
te

go
ri

es
fa

ct
or

s
Fu

nc
ti

on
al

Pe
rf

or
m

an
ce

Ch
an

ge
M

an
ag

em
en

t
D

es
ig

n
Pe

rf
or

m
an

ce
A

da
pt

at
io

n

Pr
od

uc
to

pe
ra

ti
on

Co
rr

ec
tn

es
s

x
x

Re
lia

bi
lit

y
x

x
Ef

fic
ie

nc
y

x
x

In
te

gr
it

y
x

x
U

sa
bi

lit
y

x
x

Pr
od

uc
tr

ev
is

io
n

M
ai

nt
ai

na
bi

lit
y

x
x

Fl
ex

ib
ili

ty
x

x
Te

st
ab

ili
ty

Pr
od

uc
tt

ra
ns

it
io

n
Po

rt
ab

ili
ty

x
x

Re
us

ab
ili

ty
x

x
In

te
ro

pe
ra

bi
lit

y
x

x

Fa
ct

or
s

of
th

e
Ve

ri
fia

bi
lit

y
x

x
al

te
rn

at
iv

e
m

od
el

s
Ex

pa
nd

ab
ili

ty
x

x
S

af
et

y
x

M
an

ag
ea

bi
lit

y
x

Su
rv

iv
ab

ili
ty

x

So, one can expect that a project will be carried out according to two
requirements documents:

■ The client’s requirements document
■ The developer’s additional requirements document.

3.8 Software compliance with quality factors

Throughout the software development process, the extent to which the
process complies with the requirements of the various quality factors is
examined by design reviews, software inspections, software tests, and so
forth. Comprehensive discussions of design reviews, software testing, soft-
ware quality metrics and other tools for verifying and validating the quality
of software are provided in the balance of this book.

Furthermore, the software product’s compliance to the requirements
belonging to the various quality factors is measured by software quality met-
rics, measures that quantify the degree of compliance. In order to allow for
valid measurements of compliance, sub-factors have been defined for those
quality factors that represent a wide range of attributes and aspects of soft-
ware use. Software quality metrics are suggested for each of these
sub-factors. Chapter 21 is dedicated to the subject of software metrics.

Table 3.3 presents some of these sub-factors, the majority of which were
suggested by Evans and Marciniak (1987).

49

3.8 S
oftw

are com
pliance w

ith quality
factors

Table 3.3: Factors and sub-factors

Factor model Software quality Sub-factors
factors

McCall’s model: Correctness Accuracy
Product operation Completeness
category Up-to-dateness

Availability (response time)
Coding and documentation guidelines
compliance (consistency)

Reliability System reliability
Application reliability
Computational failure recovery
Hardware failure recovery

Efficiency Efficiency of processing
Efficiency of storage
Efficiency of communication
Efficiency of power usage (for portable units)

Integrity Access control
Access audit

Usability Operability
Training

▲

chapter 4

The components of the
software quality assurance
system – overview

Chapter outline

4.1 The SQA system – an SQA architecture 57
4.2 Pre-project components 60

4.2.1 Contract review 60
4.2.2 Development and quality plans 60

4.3 Software project life cycle components 61
4.3.1 Reviews 61
4.3.2 Expert opinions 62
4.3.3 Software testing 63
4.3.4 Software maintenance components 63
4.3.5 Assurance of the quality of the external

participant’s work 64
4.4 Infrastructure components for error prevention

and improvement 65
4.4.1 Procedures and work instructions 65
4.4.2 Supporting quality devices 66
4.4.3 Staff training, instruction and certification 66
4.4.4 Preventive and corrective actions 66
4.4.5 Configuration management 67
4.4.6 Documentation control 67

4.5 Management SQA components 68
4.5.1 Project progress control 68
4.5.2 Software quality metrics 68
4.5.3 Software quality costs 69

4.6 SQA standards, system certification, and assessment
components 69
4.6.1 Quality management standards 69
4.6.2 Project process standards 70

4.7 Organizing for SQA – the human components 70
4.7.1 Management’s role in SQA 70
4.7.2 The SQA unit 71
4.7.3 SQA trustees, committees and forums 71

4.8 The considerations guiding construction of an
organization’s SQA system 72

57

4.1 The SQ
A

 system
 –

 an SQ
A

 architecture
This chapter, the final chapter of the introductory portion of the text, is ded-
icated to a schematic overview of the wide range of SQA components
available to planners of an intra-organizational SQA system. As a local sys-
tem, an intra-organizational SQA system bears “local colors”, which are
affected by the characteristics of the organization, its development projects,
software maintenance activities, and professional staff. The concise descrip-
tion of SQA components is followed by a discussion of the considerations
guiding construction of an organization’s SQA system. This glimpse will
allow you to obtain some preliminary understanding about the potential
contribution of each component, about the entire range of components, and
about the system as a defined entity.

4.1 The SQA system – an SQA architecture

An SQA system always combines a wide range of SQA components, all of
which are employed to challenge the multitude of sources of software errors
and to achieve an acceptable level of software quality. As stated in Chapter
1, the task of SQA is unique in the area of quality assurance due to the spe-
cial characteristics of software. In addition, the environment in which
software development and maintenance is undertaken directly influences the
SQA components (see Chapter 1).

SQA system components can be classified into six classes:

■ Pre-project components. To assure that (a) the project commitments have
been adequately defined considering the resources required, the schedule
and budget; and (b) the development and quality plans have been cor-
rectly determined.

■ Components of project life cycle activities assessment. The project life
cycle is composed of two stages: the development life cycle stage and the
operation–maintenance stage.

The development life cycle stage components detect design and pro-
gramming errors. Its components are divided into the following four
sub-classes:

– Reviews
– Expert opinions
– Software testing.

The SQA components used during the operation–maintenance phase
include specialized maintenance components as well as development life
cycle components, which are applied mainly for functionality improving
maintenance tasks.

An additional sub-class of SQA project life cycle components deals with
assuring the quality of project parts performed by subcontractors and other
external participants during project development and maintenance.

■ Components of infrastructure error prevention and improvement. The
main objectives of these components, which are applied throughout the

58

4
Com

ponents
ofsoftw

are quality
assurance system

entire organization, are to eliminate or at least reduce the rate of errors,
based on the organization’s accumulated SQA experience.

■ Components of software quality management. This class of components
is geared toward several goals, the major ones being the control of devel-
opment and maintenance activities and the introduction of early
managerial support actions that mainly prevent or minimize schedule and
budget failures and their outcomes.

■ Components of standardization, certification, and SQA system assess-
ment. These components implement international professional and
managerial standards within the organization. The main objectives of this
class are (a) utilization of international professional knowledge, (b)
improvement of coordination of the organizational quality systems with
other organizations, and (c) assessment of the achievements of quality
systems according to a common scale. The various standards may be clas-
sified into two main groups: (a) quality management standards, and (b)
project process standards.

■ Organizing for SQA – the human components. The SQA organizational
base includes managers, testing personnel, the SQA unit and practition-
ers interested in software quality (SQA trustees, SQA committee members
and SQA forum members). All these actors contribute to software quali-
ty; their main objectives are to initiate and support the implementation of
SQA components, detect deviations from SQA procedures and method-
ology, and suggest improvements.

The entire range of SQA system components by its classes is presented in
Frame 4.1.

The spectrum of SQA components presented in this book reflects the
comprehensive conception of SQA adopted by the author (see Frame 2.6).
Accordingly, several of the SQA components presented here are unique to
this volume, and not found in other SQA texts.

A graphic illustration of SQA system components as the SQA architec-
ture is presented in Figure 4.1. Included are references to the chapters that
discuss each component in detail. An overview of the system immediately
follows.

Frame 4.1 SQA system component classes

Pre-project quality components

Project life cycle quality components

Infrastructure error preventive and improvement components

Software quality management components

Standardization, certification and SQA assessment components

Organizing for SQA – the human components

59

4.1 The SQ
A

 system
 –

 an SQ
A

 architecture

Pr
oc

ed
ur

es
Ch

. 1
4

S
up

po
rt

in
g

de
vi

ce
s

Ch
. 1

5

Tr
ai

ni
ng

in
st

ru
ct

io
n

Ch
. 1

6

Pr
ev

en
ti

ve
ac

ti
on

s
Ch

. 1
7

Co
nf

ig
ur

at
io

n
m

an
ag

em
en

t
Ch

. 1
9

D
oc

um
en

t
-a

ti
on

co
nt

ro
l

Ch
. 1

9

Pr
oj

ec
t

pr
og

re
ss

co
nt

ro
l

Ch
. 2

0

S
of

tw
ar

e
qu

al
it

y
m

et
ri

cs
Ch

. 2
1

S
of

tw
ar

e
qu

al
it

y
co

st
s

Ch
. 2

2

Q
ua

lit
y

m
an

ag
em

en
t

st
an

da
rd

s
Ch

. 2
3

Pr
oj

ec
t

pr
oc

es
s

st
an

da
rd

s
Ch

. 2
4

Q
ua

lit
y

m
an

ag
em

en
t

O
rg

an
iz

at
io

na
l b

as
e

–
hu

m
an

 c
om

po
ne

nt
s

SQ
A

 F
or

um
s

–
 S

ec
. 2

6.
4

SQ
A

 C
om

m
it

te
es

 –
 S

ec
. 2

6.
3

SQ
A

 T
ru

st
ee

s
–

 S
ec

. 2
6.

2
SQ

A
 U

ni
t –

 S
ec

. 2
6.

1
M

an
ag

em
en

t –
 C

h.
 2

5

St
an

da
rd

s
Q

ua
lit

y
in

fr
as

tr
uc

tu
re

 c
om

po
ne

nt
s

Formal design reviews
Sec. 8.2

Peer reviews
Sec. 8.3

Experts’ opinion
Sec. 8.5

Software testing
Chs 9–10

Software maintenence
Ch. 11

SQA of external participants
Ch. 12

Pr
oj

ec
t l

ife
 c

yc
le

 S
Q

A
co

m
po

ne
nt

s

Pr
oj

ec
t

de
ve

lo
pm

en
t p

la
n

an
d

qu
al

it
y

pl
an

Ch
. 6

Co
nt

ra
ct

 re
vi

ew
Ch

. 5
Pr

e-
pr

oj
ec

t S
Q

A
co

m
po

ne
nt

s
Pr

e-
pr

oj
ec

t S
Q

A
co

m
po

ne
nt

s

Figure 4.1: “The software quality shrine” – the SQA architecture

4.2 Pre-project components

The SQA components belonging here are meant to improve the preparatory
steps taken prior to initiating work on the project itself:

■ Contract review
■ Development and quality plans.

4.2.1 Contract review

Software may be developed within the framework of a contract negotiated
with a customer or in response to an internal order originating in another
department. An internal order may entail a request for developing a
firmware software system to be embedded within a hardware product, an
order for a software product to be sold as a package, or an order for the
development of administrative software to be applied within the company.
In all these instances, the development unit is committed to an agreed-upon
functional specification, budget and schedule.

Accordingly, contract review activities must include a detailed examina-
tion of (a) the project proposal draft and (b) the contract drafts. Specifically,
contract review activities include:

■ Clarification of the customer’s requirements
■ Review of the project’s schedule and resource requirement estimates
■ Evaluation of the professional staff’s capacity to carry out the proposed

project
■ Evaluation of the customer’s capacity to fulfill his obligations
■ Evaluation of development risks.

A similar approach is applied in the review of maintenance contracts. Such
reviews take into account that besides error corrections, maintenance servic-
es include software adaptation and limited software development activities
for the sake of performance improvement (termed “functionality improve-
ment maintenance”).

4.2.2 Development and quality plans

Once a software development contract has been signed or a commitment
made to undertake an internal project for the benefit of another department
of the organization, a plan is prepared of the project (“development plan”)
and its integrated quality assurance activities (“quality plan”). These plans
include additional details and needed revisions based on prior plans that pro-
vided the basis for the current proposal and contract. It is quite common for
several months to pass between the tender submission and the signing of the
contract. During this period, changes may occur in staff availability, in pro-
fessional capabilities, and so forth. The plans are then revised to reflect the
changes that occurred in the interim.

60

4
Com

ponents
ofsoftw

are quality
assurance system

The main issues treated in the project development plan are:

■ Schedules
■ Required manpower and hardware resources
■ Risk evaluations
■ Organizational issues: team members, subcontractors and partnerships
■ Project methodology, development tools, etc.
■ Software reuse plans.

The main issues treated in the project’s quality plan are:

■ Quality goals, expressed in the appropriate measurable terms
■ Criteria for starting and ending each project stage
■ Lists of reviews, tests, and other scheduled verification and validation

activities.

4.3 Software project life cycle components

The project life cycle is composed of two stages: the development life cycle
stage and the operation–maintenance stage.

Several SQA components enter the software development project life
cycle at different points. Their use should be planned prior to the project’s
initiation. The main components are:

■ Reviews
■ Expert opinions
■ Software testing
■ Software maintenance
■ Assurance of the quality of the subcontractors’ work and the customer-

supplied parts.

4.3.1 Reviews

The design phase of the development process produces a variety of docu-
ments. The printed products include design reports, software test documents,
software installation plans and software manuals, among others. Reviews
can be categorized as formal design reviews (DRs) and peer reviews.

Formal design reviews (DRs)
A significant portion of these documents requires formal professional
approval of their quality as stipulated in the development contract and
demanded by the procedures applied by the software developer. It should be
emphasized that the developer can continue to the next phase of the devel-
opment process only on receipt of formal approval of these documents.

61

4.3 S
oftw

are projectlife cycle com
ponents

Ad hoc committees whose members examine the documents presented by
the development teams usually carry out formal design reviews (widely known
as “DRs”). The committees are composed of senior professionals, including
the project leader and, usually, the department manager, the chief software
engineer, and heads of other related departments. The majority of participants
hold professional and administrative ranks higher than the project leader. On
many occasions, the customer’s representative will participate in a DR (this
participation is generally indicated among the contractual arrangements).

The DR report itself includes a list of required corrections (termed
“action items”). When a design review committee sits in order to decide
upon the continuation of the work completed so far, one of the following
options is usually open for consideration:

■ Immediate approval of the DR document and continuation to the next
development phase.

■ Approval to proceed to the next development phase after all the action
items have been completed and inspected by the committee’s representative.

■ An additional DR is required and scheduled to take place after all the action
items have been completed and inspected by the committee’s representative.

Peer reviews
Peer reviews (inspections and walkthroughs) are directed at reviewing short
documents, chapters or parts of a report, a coded printout of a software
module, and the like. Inspections and walkthroughs can take several forms
and use many methods; usually, the reviewers are all peers, not superiors,
who provide professional assistance to colleagues. The main objective of
inspections and walkthroughs is to detect as many design and programming
faults as possible. The output is a list of detected faults and, for inspections,
also a defect summary and statistics to be used as a database for reviewing
and improving development methods.

Because a peer’s participation is usually voluntarily and viewed as a sup-
plement to the regular workload, “reciprocity” considerations frequently
enter. Thus, a current participant is expected to initiate a future inspection
or walkthrough in which other colleagues will probably exchange roles
regarding the inspection activities.

4.3.2 Expert opinions

Expert opinions support quality assessment efforts by introducing additional
external capabilities into the organization’s in-house development process.
Turning to outside experts may be particularly useful in the following situations:

■ Insufficient in-house professional capabilities in a given area.

■ In small organizations in many cases it is difficult to find enough suitable
candidates to participate in the design review teams. In such situations,
outside experts may join a DR committee or, alternatively, their expert
opinions may replace a DR.

62

4
Com

ponents
ofsoftw

are quality
assurance system

■ In small organizations or in situations characterized by extreme work
pressures, an outside expert’s opinion can replace an inspection.

■ Temporary inaccessibility of in-house professionals (waiting will cause
substantial delays in the project completion schedule).

■ In cases of major disagreement among the organization’s senior profes-
sionals, an outside expert may support a decision.

4.3.3 Software testing

Software tests are formal SQA components that are targeted toward review
of the actual running of the software. The tests are based on a prepared list
of test cases that represent a variety of expected scenarios. Software tests
examine software modules, software integration, or entire software packages
(systems). Recurrent tests (usually termed “regression tests”), carried out
after correction of previous test findings, are continued till satisfactory
results are obtained. The direct objective of the software tests, other than
detection of software faults and other failures to fill the requirements, is the
formal approval of a module or integration setup so that either the next pro-
gramming phase can be begun or the completed software system can be
delivered and installed.

Software testing programs are constructed from a variety of tests, some
manual and some automated. All tests have to be designed, planned and
approved according to development procedures. The test report will include
a detailed list of the faults detected and recommendations about the perform-
ance of partial or complete recurrent tests following a subsequent round of
corrections based on the test findings. (The advantages and disadvantages of
automated testing are discussed later.) It is recommended that software tests
be carried out by an independent, outside testing unit rather than by the proj-
ect team, as the project team will naturally find it difficult to detect faults they
failed to detect during development as well as to avoid conflicts of interest.

4.3.4 Software maintenance components

Software maintenance services vary in range and are provided for extensive
periods, often several years. These services fall into the following categories:

■ Corrective maintenance – User’s support services and correction of soft-
ware code and documentation failures.

■ Adaptive maintenance – Adaptation of current software to new circum-
stances and customers without changing the basic software product.
These adaptations are usually required when the hardware system or its
components undergo modification (additions or changes).

■ Functionality improvement maintenance – The functional and perform-
ance-related improvement of existing software, carried out with respect
to limited issues.

63

4.3 S
oftw

are projectlife cycle com
ponents

Software maintenance services should meet all kinds of quality requirements,
particularly functionality and scheduling requirements (generally decided
together with the customer) as well as budget limitations (determined by the
service provider). The provision of ongoing maintenance services involves the
application of a great variety of SQA components. The main SQA components
employed in the quality assurance of the maintenance system are as follows.

Pre-maintenance components
■ Maintenance contract review
■ Maintenance plan.

Software development life cycle components
These components are applied for functionality improvement and adaptive
maintenance tasks, activities whose characteristics are similar to those of the
software development process.

Infrastructure SQA components
■ Maintenance procedures and instructions
■ Supporting quality devices
■ Maintenance staff training, retraining, and certification
■ Maintenance preventive and corrective actions
■ Configuration management
■ Control of maintenance documentation and quality records.

Managerial control SQA components
■ Maintenance service control
■ Maintenance quality metrics
■ Maintenance quality costs.

The above corresponding SQA components for the software development
process have been described briefly in other sections of this overview. We
will return to them in greater detail in the chapters dedicated to the individ-
ual topics.

4.3.5 Assurance of the quality of the external participant’s
work

Subcontractors and customers frequently join the directly contracted devel-
opers (the “supplier”) in carrying out software development projects. The
larger and more complex the project, the greater the likelihood that external
participants will be required, and the larger the proportion of work trans-
mitted to them (subcontractors, suppliers of COTS software and the
customer). The motivation for turning to external participants lies in any

64

4
Com

ponents
ofsoftw

are quality
assurance system

number of factors, ranging from the economic to the technical to personnel-
related interests, and reflects a growing trend in the allocation of the work
involved with completing complex projects. The contribution of external
participants may therefore vary. The assignment may thus concern carrying
out phased tasks such as programming or testing, or the entire range of tasks
required by a development stage of the project.

Most of the SQA controls applied to external participants are defined in
the contracts signed between the relevant parties. If an external participant’s
work is performed using software assurance standards below those of the
supplier’s, risks of not meeting schedule or other requirements are intro-
duced into the project. Hence, special software assurance efforts are required
to establish effective controls over the external participant’s work. Special
SQA efforts are needed to assure the quality of the hardware, software, staff
and training supplied by the customer.

4.4 Infrastructure components for error prevention and
improvement

The goals of SQA infrastructure are the prevention of software faults or, at
least, the lowering of software fault rates, together with the improvement of
productivity. SQA infrastructure components are developed specifically to
this end. These components are devised to serve a wide range of projects and
software maintenance services. During recent years, we have witnessed the
growing use of computerized automatic tools for the application of these
components. This class of SQA components includes:

■ Procedures and work instructions
■ Templates and checklists
■ Staff training, retraining, and certification
■ Preventive and corrective actions
■ Configuration management
■ Documentation control.

4.4.1 Procedures and work instructions

Quality assurance procedures usually provide detailed definitions for the
performance of specific types of development activities in a way that assures
effective achievement of quality results. Procedures are planned to be gener-
ally applicable and to serve the entire organization. Work instructions, in
contrast, provide detailed directions for the use of methods that are applied
in unique instances and employed by specialized teams.

Procedures and work instructions are based on the organization’s accu-
mulated experience and knowledge; as such, they contribute to the correct
and effective performance of established technologies and routines. Because

65

4.4 Infrastructure com
ponents

for error prevention and im
provem

ent

they reflect the organization’s past experience, constant care should be taken
to update and adjust those procedures and instructions to current techno-
logical, organizational, and other conditions.

4.4.2 Supporting quality devices

One way to combine higher quality with higher efficiency is to use support-
ing quality devices, such as templates and checklists. These devices, based as
they are on the accumulated knowledge and experience of the organization’s
development and maintenance professionals, contribute to meeting SQA
goals by:

■ Saving the time required to define the structure of the various documents
or prepare lists of subjects to be reviewed.

■ Contributing to the completeness of the documents and reviews.
■ Improving communication between development team and review com-

mittee members by standardizing documents and agendas.

4.4.3 Staff training, instruction and certification

The banality of the statement that a trained and well-instructed professional
staff is the key to efficient, quality performance, does not make this obser-
vation any less true. Within the framework of SQA, keeping an
organization’s human resources knowledgeable and updated at the level
required is achieved mainly by:

■ Training new employees and retraining those employees who have
changed assignments.

■ Continuously updating staff with respect to professional developments
and the in-house, hands-on experience acquired.

■ Certifying employees after their knowledge and ability have been
demonstrated.

4.4.4 Preventive and corrective actions

Systematic study of the data collected regarding instances of failure and suc-
cess contributes to the quality assurance process in many ways. Among them
we can list:

■ Implementation of changes that prevent similar failures in the future.
■ Correction of similar faults found in other projects and among the activ-

ities performed by other teams.
■ Implementing proven successful methodologies to enhance the probabili-

ty of repeat successes.

66

4
Com

ponents
ofsoftw

are quality
assurance system

The sources of these data, to mention only a few, are design review reports,
software test reports, and customers’ complaints. It should be stressed, how-
ever, that for these data to make a substantial contribution to quality, they
must be systematically collected and professionally analyzed.

4.4.5 Configuration management

The regular software development and maintenance operations involve
intensive activities that modify software to create new versions and releases.
These activities are conducted throughout the entire software service period
(usually lasting several years) in order to cope with the needed corrections,
adaptations to specific customer requirements, application improvements,
and so forth. Different team members carry out these activities simultane-
ously, although they may take place at different sites. As a result, serious
dangers arise, whether of misidentification of the versions or releases, loss of
the records delineating the changes implemented, or loss of documentation.
Consequently failures may be caused.

Configuration management deals with these hazards by introducing pro-
cedures to control the change process. These procedures relate to the
approval of changes, the recording of those changes performed, the issuing
of new software versions and releases, the recording of the version and
release specifications of the software installed in each site, and the preven-
tion of any changes in approved versions and releases once they are issued.
Most configuration management systems implement computerized tools to
accomplish their tasks. These computerized systems provide the updated and
proper versions of the installed software for purposes of further development
or correction. Software configuration procedures generally authorize an
administrator or a configuration management committee to manage all the
required configuration management operations.

4.4.6 Documentation control

SQA requires the application of measures to ensure the efficient long-term
availability of major documents related to software development (“con-
trolled documents”). The purpose of one type of controlled document – the
quality record – is mainly to provide evidence of the SQA system’s perform-
ance. Documentation control therefore represents one of the building blocks
of any SQA system.

Documentation control functions refer mainly to customer requirement
documents, contract documents, design reports, project plans, development
standards, etc. Documentation control activities entail:

■ Definition of the types of controlled documents needed
■ Specification of the formats, document identification methods, etc.
■ Definition of review and approval processes for each controlled document
■ Definition of the archive storage methods.

67

4.4 Infrastructure com
ponents

for error prevention and im
provem

ent

Controlled documents contain information important to the long-term
development and maintenance of the software system, such as software test
results, design review (DR) reports, problem reports, and audit reports.
Quality records mainly contribute to the system’s ability to respond to cus-
tomer claims in the future.

4.5 Management SQA components

Managerial SQA components support the managerial control of software
development projects and maintenance services. Control components include:

■ Project progress control (including maintenance contract control)
■ Software quality metrics
■ Software quality costs.

4.5.1 Project progress control

The main objective of project progress control components is to detect the
appearance of any situation that may induce deviations from the project’s
plans and maintenance service performance. Clearly, the effectiveness and
efficiency of the corrective measures implemented is dependent on the time-
ly discovery of undesirable situations.

Project control activities focus on:

■ Resource usage
■ Schedules
■ Risk management activities
■ The budget.

4.5.2 Software quality metrics

Measurement of the various aspects of software quality is considered to be
an effective tool for the support of control activities and the initiation of
process improvements during the development and the maintenance phases.
These measurements apply to the functional quality, productivity, and orga-
nizational aspects of the project.

Among the software quality metrics available or still in the process of
development, we can list metrics for:

■ Quality of software development and maintenance activities
■ Development teams’ productivity
■ Help desk and maintenance teams’ productivity
■ Software faults density
■ Schedule deviations.

68

4
Com

ponents
ofsoftw

are quality
assurance system

4.5.3 Software quality costs

The quality costs incurred by software development and application are,
according to the extended quality costs model, the costs of control (preven-
tion costs, appraisal costs, and managerial preparation and control costs)
combined with the costs of failure (internal failure costs, external failure
costs, and managerial failure costs). Management is especially interested in
the total sum of the quality costs. It is believed that up to a certain level,
expanding the resources allocated to control activities yields much larger
savings in failure costs while reducing total quality costs. Accordingly, man-
agement tends to exhibit greater readiness to allocate funds to profitable
proposals to improve application of existing SQA system components and
further development of new components.

With respect to the specific SQA strategy applied, analysis of software
quality costs can direct SQA efforts to the improvement of activities that
cause significant failures with their attendant high failure costs or, alter-
natively, to make expensive control activities more efficient. This analysis,
by directing attention to the teams whose activities keep their quality costs
substantially below the average, enables others to learn from them and
reproduce their success. Concomitantly, quality cost analysis can help
identify those teams whose ineffective quality assurance efforts result in
higher than average quality costs. The results can then be used to help the
teams improve.

4.6 SQA standards, system certification, and assessment
components

External tools offer another avenue for achieving the goals of software quali-
ty assurance. Specifically, the main objectives of this class of components are:

(1) Utilization of international professional knowledge.

(2) Improvement of coordination with other organizations’ quality systems.

(3) Objective professional evaluation and measurement of the achievements
of the organization’s quality systems.

The standards available may be classified into two main sub-classes: quality
management standards and project process standards. Either or both of the
two sub-classes can be required by the customer and stipulated in the accom-
panying contractual agreements.

4.6.1 Quality management standards

The organization can clearly benefit from quality standards of the second
sub-class that guide the management of software development, maintenance,

69

4.6 SQ
A

 standards, system
 certification, and assessm

entcom
ponents

chapter 5

Contract review

A bad contract is always an undesirable event. From the viewpoint of SQA,
a bad contract – usually characterized by loosely defined requirements, and
unrealistic budgets and schedules – is expected to yield low-quality software.
So, it is natural for an SQA program to begin its preventive quality assurance
efforts with a review of the proposal draft and, later, the contract draft
(“contract review” covers both activities). The two reviews are aimed at
improving the budget and timetable that provide the basis for the proposal
and the subsequent contract, and revealing potential pitfalls at an early
enough stage (in the proposal draft and in the contract draft).

This chapter is dedicated to the study of the objectives of contract review
and the wide range of review subjects that correspond to these objectives. The
contract review process originates in the customer–supplier relationship, and
is expected to make a substantial contribution to internal projects as well.

Chapter outline

5.1 Introduction: the CFV Project completion celebration 78
5.2 The contract review process and its stages 79
5.3 Contract review objectives 80

5.3.1 Proposal draft review objectives 80
5.3.2 Contract draft review objectives 82

5.4 Implementation of a contract review 82
5.4.1 Factors affecting the extent of a contract review 82
5.4.2 Who performs a contract review? 83
5.4.3 Implementation of a contract review for a major proposal 83

5.5 Contract review subjects 85
5.6 Contract reviews for internal projects 85

Summary 87
Selected bibliography 88
Review questions 89
Topics for discussion 89
Appendix 5A: Proposal draft reviews – subjects checklist 92
Appendix 5B: Contract draft review – subjects checklist 94

After completing this chapter, you will be able to:

■ Explain the two contract review stages.
■ List the objectives of each stage of the contract review.
■ Identify the factors that affect the extent of the review.
■ Identify the difficulties in performing a major contract review.
■ Explain the recommended avenues for implementing a major contract review.
■ Discuss the importance of carrying out a contract review for internal projects.

5.1 Introduction: the CFV Project completion celebration

A happy gathering of the CFV project team at a popular restaurant down-
town was called to celebrate the successful completion of a 10-month project
for Carnegie Fruits and Vegetables, a produce wholesaler. The new informa-
tion system registers product receipts from growers, processes clients’ orders
and produce shipments to clients (greengrocers and supermarkets), bills
clients, and calculates payments made to the growers.

The team members were proud to emphasize that the project was conducted
in full as originally scheduled. The team was especially jubilant as earlier that
morning each member had received a nice bonus for finishing on time.

The third speaker, the software company’s Vice President for Finance,
altered the pleasant atmosphere by mentioning that this very successful project
had actually lost about $90000. During his remarks, he praised the planners
for their good estimates of the resources needed for the analysis and design
phase, and for the plans for broad reuse of software from other systems that
were, this time, completely realized. “The only phase where our estimates
failed was one of the project’s final phases, the client’s instruction, that where
the client’s staff are instructed on how to use the new information system. It
now appears that no one had read the relevant RFP (requirement for pro-
posal) section carefully enough. This section stated in a rather innocuous
manner that the personnel in all the CFV branches where the software was
to be installed would be instructed in its use by the software supplier.” After
a short pause he continued thus: “Nobody tried to find out how many
branches our client operates. Nobody mentioned that CFV operates 19
branches – six of them overseas – before signing the contract!” He continued:
“We tried to renegotiate the installation and instruction budget items with
the client, but the client insisted on sticking to the original contract.”
Though no names were mentioned, it was clear that he blamed the sales
negotiating team for the loss.

Similar, and in many cases much heavier, losses stem from sloppily writ-
ten proposals or poorly understood contracts. Shallow and quick resource
estimates, as well as exaggerated software sales efforts, have led to unrealis-
tic schedules and budgets, or to unrealistic professional commitments. A
proposal suffering from one of these faults or, worse, a combination of them
and that later becomes a contract provides a certain recipe for project or

78

5
Contractreview

service failure. It is clear that unrealistic professional commitments lead to
failure to achieve the required software quality. Furthermore, in most cases,
schedule and budget failures are accompanied by lower than acceptable soft-
ware quality, due to pressures exerted on team members by management “to
save time” and “to save resources”. We can quite unrestrictedly state that
such excessive pressures eventually lead to high rates of software failure.

Contract review is the software quality element that reduces the proba-
bility of such undesirable situations. Contract review is a requirement by the
ISO 9001 standard and ISO 9000-3 Guidelines (see Sec. 4.3 of ISO (1997)
and Sec. 7.2 of ISO/IEC (2001)). See Oskarsson and Glass (1996) for a dis-
cussion of some application aspects of contract review.

5.2 The contract review process and its stages

Several situations can lead a software company (“the supplier”) to sign a
contract with a customer. The most common are:

(1) Participation in a tender.

(2) Submission of a proposal according to the customer’s RFP.

(3) Receipt of an order from a company’s customer.

(4) Receipt of an internal request or order from another department in
the organization.

Contract review is the SQA component devised to guide review drafts of
proposal and contract documents. If applicable, contract review also pro-
vides oversight of the contacts carried out with potential project partners and
subcontractors. The review process itself is conducted in two stages:

■ Stage One – Review of the proposal draft prior to submission to the
potential customer (“proposal draft review”). This stage reviews the final
proposal draft and the proposal’s foundations: customer’s requirement
documents, customer’s additional details and explanations of the
requirements, cost and resources estimates, existing contracts or contract
drafts of the supplier with partners and subcontractors.

■ Stage Two – Review of contract draft prior to signing (“contract draft
review”). This stage reviews the contract draft on the basis of the pro-
posal and the understandings (including changes) reached during the
contract negotiations sessions.

The processes of review can begin once the relevant draft document has been
completed. The individuals who perform the review thoroughly examine the
draft while referring to a comprehensive range of review subjects. A check-
list is very helpful for assuring the full coverage of relevant subjects (see
Appendices 5A and 5B).

79

5.2 The contractreview
 process

and its
stages

After the completion of a review stage it is required that the necessary
changes, additions and corrections are introduced by the proposal team
(after the proposal draft review) and by the legal department (after the con-
tract draft review).

5.3 Contract review objectives

As can be expected, the two contract review stages have different objectives,
which we detail in the following.

5.3.1 Proposal draft review objectives

The objective of the proposal draft review is to make sure that the following
activities have been satisfactorily carried out.

(1) Customer requirements have been clarified and documented.
RFP documents and similar technical documents can be too general and
imprecise for the project’s purposes. As a result, additional details
should be obtained from the customer. Clarifications of vague require-
ments and their updates should be recorded in a separate document that
is approved by both the customer and the software firm.

(2) Alternative approaches for carrying out the project have been examined.
Often, promising and suitable alternatives on which to present a propos-
al have not been adequately reviewed (if at all) by the proposal team. This
stipulation refers especially to alternatives encompassing software reuse,
and partnerships or subcontracting with firms that have specialized
knowledge or staff that can qualify for meeting the proposal’s terms.

(3) Formal aspects of the relationship between the customer and the soft-
ware firm have been specified.
The proposal should define formalities that include:

■ Customer communication and interface channels
■ Project deliverables and acceptance criteria
■ Formal phase approval process
■ Customer design and test follow-up method
■ Customer change request procedure.

(4) Identification of development risks.
Development risks, such as insufficient professional know-how regard-
ing the project’s professional area or the use of required development
tools, need to be identified and resolved. For a comprehensive descrip-
tion of identification of software risk items and methods for risk
management actions, see Appendix 6A.

(5) Adequate estimation of project resources and timetable.
Resources estimation refers to professional staff as well as the project’s
budget, including subcontractors’ fees. Scheduling estimates should take into
account the time requirements of all the parties participating in the project.

80

5
Contractreview

(6) Examination of the company’s capacity with respect to the project.
This examination should consider professional competence as well as
the availability of the required team members and development facilities
on the scheduled time.

(7) Examination of the customer’s capacity to meet his commitments.
This examination refers to the customer’s financial and organizational
capacities, such as personnel recruitment and training, installation of the
required hardware, and upgrading of its communications equipment.

(8) Definition of partner and subcontractor participation.
This covers quality assurance issues, payment schedules, distribution of
project income/profits, and cooperation between project management
and teams.

(9) Definition and protection of proprietary rights.
This factor is of vital importance in cases where reused software is insert-
ed into a new package or when rights for future reuse of the current
software need to be decided. This item also refers to the use of propri-
etary files of data crucial for operating the system and security measures.

The objectives of a proposal draft review are summarized in Frame 5.1.

81

5.3 Contractreview
 objectives

Implementation tip

In some situations, a supplier deliberately offers a below-cost proposal,
considering factors such as sales potential. In these cases, where the proposal is
based on realistic estimates of schedule, budget and professional capabilities,
the loss incurred is considered to be a calculated loss, not a contract failure.

Frame 5.1 Proposal draft review objectives

The nine proposal draft review objectives that make sure the following
activities have been satisfactorily carried out:

1. Customer requirements have been clarified and documented.

2. Alternative approaches for carrying out the project have been examined.

3. Formal aspects of the relationship between the customer and the software
firm have been specified.

4. Identification of development risks.

5. Adequate estimation of project resources and timetable have been prepared.

6. Examination of the firm’s capacity with respect to the project.

7. Examination of the customer’s capacity to fulfill his commitments.

8. Definition of partner and subcontractor participation conditions.

9. Definition and protection of proprietary rights.

5.3.2 Contract draft review objectives

The objectives of the contract draft review are to make sure that the follow-
ing activities have been performed satisfactorily:

(1) No unclarified issues remain in the contract draft.

(2) All the understandings reached between the customer and the firm are to be
fully and correctly documented in the contract and its appendices. These
understandings are meant to resolve all the unclarified issues and differences
between the customer and the firm that have been revealed so far.

(3) No changes, additions, or omissions that have not been discussed and
agreed upon should be introduced into the contract draft. Any change,
whether intentional or not, can result in substantial additional and
unanticipated commitments on the part of the supplier.

The objectives of a contract draft review are summarized in Frame 5.2.

5.4 Implementation of a contract review

Contract reviews vary in their magnitude, depending on the characteristics
of the proposed project. This complexity may be either technical or organi-
zational. Accordingly, different levels of professional effort are justified for
the various contract reviews. Special professional efforts are required for
major proposals.

5.4.1 Factors affecting the extent of a contract review

The most important project factors determining the extent of the contract
review efforts required are:

■ Project magnitude, usually measured in man-month resources.

■ Project technical complexity.

82

5
Contractreview

Frame 5.2 Contract draft review objectives

The three contract draft review objectives that make sure the following
activities have been satisfactorily carried out:

1. No unclarified issues remain in the contract draft.

2. All understandings reached subsequent to the proposal are correctly
documented.

3. No “new” changes, additions, or omissions have entered the contract draft.

■ Degree of staff acquaintance with and experience in the project area.
Acquaintance with the project area is frequently linked with software
reuse possibilities; in cases where a high proportion of software reuse is
possible, the extent of the review is reduced.

■ Project organizational complexity. The greater the number of organiza-
tions (i.e., partners, subcontractors, and customers) taking part in the
project, the greater the contract review efforts required.

We may therefore assume that “simple” contract reviews will be carried out
by one reviewer, who will focus on a few subjects and invest little time in his
review. However, a large-scale contract review may require the participation
of a team to examine a wide range of subjects, a process demanding the
investment of many working hours.

5.4.2 Who performs a contract review?

The task of contract review can be completed by various individuals, listed
here in ascending order, according to the complexity of the project:

■ The leader or another member of the proposal team.

■ The members of the proposal team.

■ An outside professional or a company staff member who is not a mem-
ber of the proposal team.

■ A team of outside experts. Usually, a contract review team composed of
outside experts is called in, especially for major proposals (see Section
5.4.3). Outside experts may be called also for contract reviews in small
software development organizations that are unable to find enough ade-
quate team members in their staff.

5.4.3 Implementation of a contract review for a major proposal

Major proposals are proposals for projects characterized by at least some of
the following: very large-scale project, very high technical complexity, new
professional area for the company, and high organizational complexity (real-
ized by a great number of organizations, i.e., partners, subcontractors, and
customers, that take part in the project). Implementation of a contract
review process for a major project usually involves substantial organization-
al difficulties. Some avenues for overcoming these difficulties are suggested
here, following a review of the factors that introduce difficulties to a smooth
completion of the task.

The difficulties of carrying out contract reviews for major proposals
Almost everybody agrees that contract review is a major procedure for
reducing the risks of major project failures. Several substantial, fundamental,

83

5.4 Im
plem

entation ofa contractreview

and inherent difficulties in performing the contract review exist, especially for
those situations requiring a review of a major proposal.

■ Time pressures. Both stages of the contract review, proposal draft review
and contract draft review are usually performed when the tender team is
under considerable time pressures. As a result, each stage of the contract
review has to be completed within a few days to allow for the subsequent
corrections of documents to take place.

■ Proper contract review requires substantial professional work.
Professional performance of each stage of the contract review requires
investment of substantial professional expertise (the amount of time
required varies, of course, according to the nature of the project).

■ The potential contract review team members are very busy. The potential
members of the contract review team are often senior staff members and
experts who usually are committed to performing their regular tasks at
the very time that the review is needed. Freeing professional staff can
therefore be a significant logistical problem.

Recommended avenues for implementing major contract reviews
The careful planning of contract reviews is required for their successful com-
pletion. As should be clear by now, this holds doubly for major contract
reviews. It is recommended that the following steps be taken to facilitate the
review process.

■ The contract review should be scheduled. Contract review activities
should be included in the proposal preparation schedule, leaving suffi-
cient time for the review and the ensuing corrections to be made.

■ A team should carry out the contract review. Teamwork makes it possi-
ble to distribute the workload among the team members so that each
member of the contract review team can find sufficient time to do his or
her share (which may include preparing a written report that summarizes
his or her findings and recommendations).

■ A contract review team leader should be appointed. It is important that
the responsibility for organizing, managing and controlling the contract
review activities be defined, preferable by appointing a team leader. The
activities of the team leader include:

– Recruitment of the team members
– Distribution of review tasks among the team’s members
– Coordination between the members of the review team
– Coordination between the review team and the proposal team
– Follow-up of activities, especially compliance with the schedule
– Summarization of the findings and their delivery to the proposal team.

84

5
Contractreview

5.5 Contract review subjects

Contract reviews examine many subjects, based on the contract review
objectives. Checklists are useful devices for helping review teams to organize
their work and achieve high coverage of the relevant subjects. It is clear that
many of the subjects on these lists are irrelevant for any specific project. At
the same time, even a comprehensive checklist may exclude some important
subjects relevant to a given project proposal. It is the task of the contract
review team, but especially of its leader, to determine the list of subjects per-
tinent for the specific project proposal.

Lists of contract review subjects, classified according to contract review
objectives, are presented in the appendices to this chapter:

■ Appendix 5A: Proposal draft review – subjects checklist
■ Appendix 5B: Contract draft review – subjects checklist.

5.6 Contract reviews for internal projects

A substantial number, if not the majority, of software projects are internal
projects — “in-house” projects – carried out by one unit of an organization
for another unit of the same organization. In such cases, the software devel-
opment unit is the supplier, while the other unit can be considered the
customer. Typical internal projects and their in-house customers are listed in
Table 5.1.

Frequently, internal software development projects are not based on
what would be considered a complete customer–supplier relationship. In
many cases, these projects are based on general agreements, with goodwill
playing an important role in the relationships between the two units. It fol-
lows that the developing unit will perform only a short and “mild” contract
review, or none at all.

85

5.6 Contractreview
s

for internalprojects

Implementation tip

As contract reviews may impose a substantial workload and additional
pressures on the proposal team, thought should be given to when it may be
appropriate to abstain from conducting a contract review. Such situations may
occur with small-scale projects, or small- to medium-scale cost-plus projects.
Contract review procedures should therefore define those types of projects for
which a contract review is not obligatory.

For other defined types of “simple” projects, it is recommended that
authority be given to a senior manager to make the decision as to whether to
perform the review.

chapter 6

Development and
quality plans

Imagine that you have just been appointed head of a sizable project. As is
often the case in the software industry, you come under serious time pres-
sures from the very first day. Because you were a member of the proposal
team and participated in most of the meetings held with the customer’s rep-
resentatives, you are confident that you know all that is necessary to do the
job. You intend to use the proposal plans and internal documents that the
team had prepared as your development and quality plans. You are prepared
to rely on these materials because you know that the proposal and its esti-
mates, including the timetable, staff requirements, list of project documents,
scheduled design reviews, and list of development risks have all been thor-
oughly reviewed by the contract review team.

Chapter outline

6.1 Development plan and quality plan objectives 97
6.2 Elements of the development plan 97
6.3 Elements of the quality plan 101
6.4 Development and quality plans for small projects and for

internal projects 103
6.4.1 Development plans and quality plans for small projects 104
6.4.2 Development plans and quality plans for

internal projects 105

Summary 106
Selected bibliography 108
Review questions 109
Topics for discussion 110

Appendix 6A: Software development risks and software
risk management 112
6A.1 Software development risks 112
6A.2 Risk management activities and measures 113
6A.3 The risk management process 115

You are therefore a bit disappointed that at this crucial point of the proj-
ect, the Development Department Manager demands that you immediately
prepare new and separate project development plans (“development plan”)
and project quality plans (“quality plan”). When you claim that the com-
pleted proposal and its appendices could serve as the requested plans, the
manager insists that they be updated, with new and more comprehensive
topics added to guarantee the plans’ adequacy. “By the way,” the manager
mentions almost as an aside, “don’t forget that a period of seven months has
elapsed between the proposal preparation and the final signing of the con-
tract. Such a period is a hell of time in our trade”

You should expect that your department manager is right. The effort
invested in preparing the development and quality plans will certainly be
beneficial. You may discover that some team members will not be available
at the scheduled dates due to delays in completion of their current assign-
ments, or that the consulting company that had agreed to provide
professional support in a highly specialized and crucial area has suffered
heavy losses and gone bankrupt in the interim. These are just two of the
types of problems that can arise.

To sum up, the project needs development and quality plans that:

■ Are based on proposal materials that have been re-examined and thor-
oughly updated.

■ Are more comprehensive than the approved proposal, especially with
respect to schedules, resource estimates, and development risk evaluations.

■ Include additional subjects, absent from the approved proposal.

■ Were prepared at the beginning of the project to sound alerts regarding
scheduling difficulties, potential staff shortages, paucity of development
facilities, problems with meeting contractual milestones, modified devel-
opment risks, and so on.

Development and quality plans are major elements needed for project com-
pliance with 9000.3 standards (see Sections 4.2 and 4.4 of ISO (1997) and
Sections 7.1 and 7.3 of ISO/IEC (2001), and with the IEEE 730 standard
(IEEE, 1998). It is also an important element in the Capability Maturity
Model (CMM) for assessment of software development organization matu-
rity (see Paulk et al., 1995, Sec. 7.2; Humphrey, 1989; Felschow, 1999).
Given their importance, these plans deserve a special chapter.

Therefore, this chapter is dedicated to the study of project development
and quality plans, their objectives and elements.

After completing this chapter, you will be able to:

■ Explain the objectives of a development plan and a quality plan.
■ Identify the elements of a development plan.
■ Identify the elements of a quality plan.

96

6
D

evelopm
entand quality

plans

yanti
Highlight

■ Identify the major software risk items.
■ Explain the process of software risk management.
■ Discuss the importance of development and quality plans for small projects.
■ Discuss the importance of development and quality plans for internal

projects.

6.1 Development plan and quality plan objectives

Planning, as a process, has several objectives, each of which is meant to pre-
pare adequate foundations for the following:

(1) Scheduling development activities that will lead to the successful and
timely completion of the project, and estimating the required manpow-
er resources and budget.

(2) Recruiting team members and allocating development resources (accord-
ing to activity schedules and manpower resource requirement estimates).

(3) Resolving development risks.

(4) Implementing required SQA activities.

(5) Providing management with data needed for project control.

6.2 Elements of the development plan

Based on the proposal materials, the project’s development plan is prepared
to fulfill the above objectives. The following elements, each applicable to dif-
ferent project components, comprise a project development plan.

(1) Project products
The development plan includes the following products:

■ Design documents specifying dates of completion, indicating those
items to be delivered to the customer (“deliverables”)

■ Software products (specifying completion date and installation site)
■ Training tasks (specifying dates, participants and sites).

(2) Project interfaces
Project interfaces include:

■ Interfaces with existing software packages (software interface)
■ Interfaces with other software and/or hardware development teams

that are working on the same system or project (i.e., cooperation and
coordination links)

■ Interfaces with existing hardware (hardware interface).

97

6.2 Elem
ents

ofthe developm
entplan

yanti
Highlight

yanti
Highlight

(3) Project methodology and development tools to be applied at each phase
of the project

(4) Software development standards and procedures
A list should be prepared of the software development standards and
procedures to be applied in the project.

(5) The mapping of the development process
Mapping of the development process involves providing detailed defini-
tions of each of the project’s phases. These descriptions include
definitions of inputs and outputs, and the specific activities planned.
Activity descriptions include:

(a) An estimate of the activity’s duration. These estimates are highly
dependent on the experience gained in previous projects.

(b) The logical sequence in which each activity is to be performed,
including a description of each activity’s dependence on previously
completed activities.

(c) The type of professional resources required and estimates of how
much of these resources are necessary for each activity.

Several methods are available for scheduling and graphically present-
ing the development process. One of the most commonly used methods is
the GANTT chart, which displays the various activities by horizontal bars
whose lengths are proportional to the activity’s duration. The bars repre-
sent the activities themselves, and are placed vertically, according to their
planned initiation and conclusion. Several computerized tools can prepare
GANTT charts in addition to producing lists of activities by required time
for their beginning and conclusion, and so forth.

More advanced scheduling methodologies, such as CPM and PERT,
both of which belong to the category of critical path analysis, take

98

6
D

evelopm
entand quality

plans

Implementation tip

When evaluating the suitability of proposed project methodology and
development tools, one should also take into account the professional
experience of the staff, including the subcontractors’ personnel, even
if temporary.

Implementation tip

SQA activities, such as design review and software tests, should be
included among the scheduled project activities. The same applies to the
design and code correction activities. Failing to schedule these activities
can cause unanticipated delays in the initiation of subsequent activities.

sequence dependencies into account in addition to duration of activities.
They enable calculation of the earliest and latest acceptable start times
for each activity. The difference between start times determines the activ-
ity’s scheduling flexibility. Special attention is awarded to those activities
lacking scheduling flexibility (which explains their being called “critical
path” activities), and whose tardy completion may cause delay in the
conclusion of the entire project.

Several software packages, used in conjunction with these method-
ologies, support the planning, reporting and follow-up of project
timetables. An example of a software package of this type is Microsoft
Project™. For a more detailed discussion of scheduling, refer to the lit-
erature dealing with project management.

(6) Project milestones
For each milestone, its completion time and project products (docu-
ments and code) are to be defined.

(7) Project staff organization
The organization plan comprises:

■ Organizational structure: definition of project teams and their tasks,
including teams comprised of a subcontractor’s temporary workers.

■ Professional requirements: professional certification, experience in a
specific programming language or development tool, experience with
a specific software product and type, and so forth.

■ Number of team members required for each period of time, according
to the activities scheduled. It is expected that teams will commence their
activities at different times, and that their team size may vary from one
period to the next, depending on the planned activities.

■ Names of team leaders and team members. Difficulties are expected
to arise with respect to the long-term assignment of staff members to
teams because of unanticipated changes in their current assignments.
Therefore, the names of staff are required to help keep track of their
participation as team members.

99

6.2 Elem
ents

ofthe developm
entplan

Implementation tip

The long-term availability of project staff should be carefully examined. Lags
in completing former assignments may result in delays in joining the project
team, which increases the risk of failing to meet project milestones. In
addition, staff “evaporation” caused by resignations and/or promotions,
phenomena that are particularly frequent in the software industry, can
cause staff shortages. Therefore, estimates of staff availability should be
examined periodically to avoid “surprises”. Early warning of unforeseen
staff shortages makes it easier to resolve the problem.

(8) Development facilities
Required development facilities include hardware, software and hard-
ware development tools, office space, and other items. For each facility,
the period required for its use should be indicated on the timetable.

(9) Development risks
Development risks are inherent in any project. To understand their perva-
siveness, and how they can be controlled, we should first define the
concept. A development risk is “a state or property of a development task
or environment, which, if ignored, will increase the likelihood of project
failure” (Ropponen and Lyytinen, 2000). Typical development risks are:

■ Technological gaps – Lack of adequate and sufficient professional
knowledge and experience to carry out the demands of the develop-
ment contract.

■ Staff shortages – Unanticipated shortfalls of professional staff.

■ Interdependence of organizational elements – The likelihood that
suppliers of specialized hardware or software subcontractors, for
example, will not fulfill their obligations on schedule.

The top 10 major software risk items, as listed by Boehm and Ross
(1989), are shown in the Appendix to this chapter in Table 6A.1.
Systematic risk management activities should be initiated to deal with
them. The risk management process includes the following activities:
risk identification, risk evaluation, planning of risk management
actions (RMAs), implementation of RMAs, and monitoring of RMAs.
Software RMAs are incorporated in the development plan.

For further discussion of software development risks and software
risk management, see Appendix 6A.

The growing importance of software risk management is expressed
in the spiral model for software development. To cope with this type of
risk, a special phase dedicated to software risk assessment is assigned
to every cycle of the spiral (Boehm, 1988, 1998).

(10) Control methods
In order to control project implementation, the project manager and the
department management apply a series of monitoring practices when
preparing progress reports and coordinating meetings. A comprehensive
discussion of project control methods is found in Chapter 19.

(11) Project cost estimation
Project cost estimates are based on proposal costs estimates, followed
by a thorough review of their continued relevance based on updated
human resource estimates, contracts negotiated with subcontractors
and suppliers, and so forth. For instance, part of the project, planned
to be carried out by an internal development team, needs to be per-
formed by a subcontractor, due to unavailability of the team. A change
of this nature is usually involved in a substantial additional budget.

100

6
D

evelopm
entand quality

plans

yanti
Highlight

The elements comprising a development plan are listed in Frame 6.1.

Development plan approval
Development plan review and approval is to be completed according to the
procedures applied within the organization.

6.3 Elements of the quality plan

All or some of the following items, depending on the project, comprise the
elements of a project quality plan:

(1) Quality goals

The term “quality goals” refers to the developed software system’s sub-
stantive quality requirements. Quantitative measures are usually
preferred to qualitative measures when choosing quality goals because
they provide the developer with more objective assessments of software
performance during the development process and system testing.
However, one type of goal is not totally equivalent to the other. The pos-
sible replacement of qualitative with quantitative measures is illustrated
in the following example.

Example

A software system to serve the help desk operations of an electrical appli-
ance manufacturer is to be developed. The help desk system (HDS) is
intended to operate for 100 hours per week. The software quality assur-
ance team was requested to prepare a list of quantitative quality goals
appropriate to certain qualitative requirements, as shown in Table 6.1.

101

6.3 Elem
ents

ofthe quality
plan

Frame 6.1 The elements comprising a development plan

1. Project products, specifying “deliverables”

2. Project interfaces

3. Project methodology and development tools

4. Software development standards and procedures

5. Map of the development process

6. Project milestones

7. Project staff organization

8. Required development facilities

9. Development risks and risk management actions

10. Control methods

11. Project cost estimates

The quality goals should reflect the major acceptance criteria indicated
in the customer’s requirement document (i.e., the RFP document). As
such, quality goals serve as measures of the successful achievement of the
customer’s quality requirements.

(2) Planned review activities

The quality plan should provide a complete listing of all planned review
activities: design reviews (DRs), design inspections, code inspections,
and so on, with the following determined for each activity:

■ The scope of the review activity

■ The type of the review activity

■ The schedule of review activities (as defined by its priority and the
succeeding activities of the project process)

■ The specific procedures to be applied

■ Who is responsible for carrying out the review activity?

(3) Planned software tests

The quality plan should provide a complete list of planned software
tests, with the following designated for each test:

■ The unit, integration or the complete system to be tested

■ The type of testing activities to be carried out, including specification
of computerized software tests to be applied

■ The planned test schedule (as defined by its priority and the succeed-
ing activities of the project process)

102

6
D

evelopm
entand quality

plans

Table 6.1: Help desk requirements and quantitative goals

HDS qualitative Related quantitative quality goals
requirements

The HDS should be A new help desk operator should be able to learn the details
user friendly of the HDS following a course lasting less than 8 hours, and

to master operation of the HDS in less than 5 working days.

The HDS should be HDS availability should exceed 99.5% (HDS downtime should not
very reliable exceed 30 minutes per week).

The HDS should The system’s recovery time should not exceed 10 minutes in 99%
operate continuously of cases of HDS failure.

The HDS should be An HDS operator should be able to handle at least 100 customer
highly efficient calls per 8-hour shift.

The HDS should Waiting time for an operator response should not exceed
provide high quality 30 seconds in 99% of the calls. Achievement of this goal depends
service to the on the combination of software features and number of
applying customers workstations installed and operated.

■ The specific procedures to be applied

■ Who is responsible for carrying out the test.

(4) Planned acceptance tests for externally developed software

A complete list of the acceptance tests planned for externally developed
software should be provided within the quality plan. Items to be includ-
ed are (a) purchased software, (b) software developed by subcontractors,
and (c) customer-supplied software. The acceptance tests for externally
developed software should parallel those used for internally developed
software tests.

(5) Configuration management

The quality plan should specify configuration management tools and
procedures, including those change-control procedures meant to be
applied throughout the project.

The required software quality plan elements are listed in Frame 6.2.

The quality plan document, its format and approval
The quality plan may be prepared as part of the development plan or as an
independent document. In some cases, the plan is divided into several docu-
ments by item category, such as DR plan, testing plan, and plan for
externally developed software acceptance tests. Review and approval of the
quality plan should be conducted according to the organization’s standard
procedures for such plans.

6.4 Development and quality plans for small projects
and for internal projects

It is quite natural for project leaders to try to evade the “hassle” of prepar-
ing a development plan and a quality plan (and the hustle surrounding
reviews and plan approvals). This behavior reflects the tendency to avoid
“bureaucracy work” and the sweeping control that customers may attempt

103

6.4 D
evelopm

entand quality
plans

for sm
allprojects

and for internalprojects

Frame 6.2 Elements of a software quality plan

1. List of quality goals

2. Review activities

3. Software tests

4. Acceptance tests for software externally developed

5. Configuration management tools and procedures

to exercise. This tendency is especially common in two different situations:
small projects and internal projects. The argument for preparing these plans
for such projects is discussed in the following two sections.

6.4.1 Development plans and quality plans for small projects

■ Does a project of only 40 working days’ duration, to be performed by one
professional and completed within 12 weeks, justify the investment of a
man-day in order to prepare full-scale development and quality plans?

■ Does a project to be implemented by three professionals, with a total
investment of 30 man-days and completed within five weeks, require full-
scale plans?

It should be clear that the development and quality plan procedures applica-
ble to large projects cannot be automatically applied to small projects.
Special procedures are needed. These procedures determine how to treat the
project in question with respect to the plans:

(1) Cases/situations where neither development nor quality plans are
required, e.g. projects requiring 15 man-days.

(2) Cases/situations where the decision to prepare the plans is left to the
project leader’s discretion. One example could be a project requiring less
than 50 man-days where no significant software risk item had been iden-
tified – in this case it might be decided that no plans will be prepared.
Another example could be a small but complicated project that has to be
completed within 30 days, in which there is a heavy penalty on not being
completed on time. In this case, planning is needed in order to cope with
the project difficulties.

(3) Cases/situations where development and quality plans are obligatory.

A list of elements recommended for inclusion in development and quality
plans for small projects is shown in Frame 6.3.

104

6
D

evelopm
entand quality

plans

Frame 6.3 Recommended elements of development and quality
plans for small projects

The development plan:

■ Project products, indicating “deliverables”

■ Project benchmarks

■ Development risks

■ Estimates of project costs

The quality plan:

■ Quality goals

yanti
Highlight

Several advantages to “planned” small projects over “unplanned” proj-
ects can be identified, even for “reduced” plans:

(1) A more comprehensive and thorough understanding of the task is attained.

(2) Greater responsibility for meeting obligations can be assigned.

(3) It becomes easier for management and customers to share control of the
project and to identify unexpected delays early on.

(4) Better understandings with respect to the requirements and timetable
can be reached between the developer and the customer.

6.4.2 Development plans and quality plans for internal projects

Internal projects are those projects intended for use by other departments in
the organization or by the entire organization, as well as those projects deal-
ing with software package development for the software market. Common
to all these project types is the fact that no external body participates as cus-
tomer in their development. Internal projects can be of medium or large
scale. Yet even in these cases, there is a tendency to avoid preparation of ade-
quate development and quality plans. The following example illustrates the
negative consequences of an “unplanned” internal project.

Example
The Marketing Department of Toyware Ltd, a new computer games manu-
facturer, had planned to hit the market with “Super-Monster 2000”, the
firm’s new, advanced computer game, during the upcoming Christmas sea-
son. The Software Development Department claimed that work on the game
should commence immediately in order to complete the project on time.
Therefore, preparation of a proposal for discussion by the Marketing and
Software Development Departments, and the subsequent preparation of
development and quality plans, were not viewed as necessary. The
Development Department estimated the project budget at $240 000, which
was transferred to the Department. According to the marketing timetable,
system tests were to be completed no later than 1 October so as to allow the
Marketing Department to carry out the required promotion and advertising
campaigns in time for the Christmas sales season.

As the project progressed, it appeared that there might be a delay, but
only at the end of June was it obvious that a three-month delay could not
be avoided. The promotional and advertising activities that had taken place
before 30 June thus became worthless. The project was finally completed
at the end of February. The project’s cost overrun was significant – actual
costs exceeded $385 000 – but most painful was the company’s lost oppor-
tunity to exploit the Christmas market. Last week, the company’s
management decided to avoid any future internal computer game develop-
ment projects.

105

6.4 D
evelopm

entand quality
plans

for sm
allprojects

and for internalprojects

yanti
Highlight

