
J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, Karaikal-609605

OBJECT ORIENTED PROGRAMMING USING JAVA
Paper Code: CSCS231

MODULE – V

Introduction to Multi-Threading, Thread life cycle, Thread priorities.

Introduction – Applets & Java Web Start – applet life-cycle, HTML tags, a

simple applet program

Multi-Threading

Java is a multi-threaded programming language which means we can develop multi-

threaded program using Java. A multi-threaded program contains two or more parts that

can run concurrently and each part can handle a different task at the same time making

optimal use of the available resources specially when your computer has multiple CPUs.

By definition, multitasking is when multiple processes share common processing

resources such as a CPU. Multi-threading extends the idea of multitasking into applications

where you can subdivide specific operations within a single application into individual

threads. Each of the threads can run in parallel. The OS divides processing time not only

among different applications, but also among each thread within an application.

Multi-threading enables you to write in a way where multiple activities can proceed

concurrently in the same program.

Life Cycle of a Thread
A thread goes through various stages in its life cycle. For example, a thread is born,

started, runs, and then dies. The following diagram shows the complete life cycle of a

thread.

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, Karaikal-609605

Following are the stages of the life cycle

New − A new thread begins its life cycle in the new state. It remains in this state until

the program starts the thread. It is also referred to as a born thread.

Runnable − After a newly born thread is started, the thread becomes runnable. A

thread in this state is considered to be executing its task.

Waiting − Sometimes, a thread transitions to the waiting state while the thread

waits for another thread to perform a task. A thread transitions back to the runnable state

only when another thread signals the waiting thread to continue executing.

Timed Waiting − A runnable thread can enter the timed waiting state for a specified

interval of time. A thread in this state transitions back to the runnable state when that time

interval expires or when the event it is waiting for occurs.

Terminated (Dead) − A runnable thread enters the terminated state when it

completes its task or otherwise terminates.

Thread Priorities

Every Java thread has a priority that helps the operating system determine the order

in which threads are scheduled.

Java thread priorities are in the range between MIN_PRIORITY (a constant of 1) and

MAX_PRIORITY (a constant of 10). By default, every thread is given priority NORM_PRIORITY

(a constant of 5).

Threads with higher priority are more important to a program and should be

allocated processor time before lower-priority threads. However, thread priorities cannot

guarantee the order in which threads execute and are very much platform dependent.

Create a Thread by Implementing a Runnable Interface

If your class is intended to be executed as a thread then you can achieve this by

implementing a Runnable interface. We need to follow three basic steps −

Step 1: As a first step, you need to implement a run() method provided by

a Runnable interface. This method provides an entry point for the thread and you will put

your complete business logic inside this method. Following is a simple syntax of the run()

method − public void run()

Step 2: As a second step, you will instantiate a Thread object using the following constructor

Thread(Runnable threadObj, String threadName);

Where, threadObj is an instance of a class that implements the Runnable interface

and threadName is the name given to the new thread.

Step 3: Once a Thread object is created, you can start it by calling start() method, which

executes a call to run() method. Following is a simple syntax of start() method −

void start();

Example

Here is an example that creates a new thread and starts running it −

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, Karaikal-609605

class RunnableDemo implements Runnable {

 private Thread t;

 private String threadName;

 RunnableDemo(String name) {

 threadName = name;

 System.out.println("Creating " + threadName);

 }

 public void run() {

 System.out.println("Running " + threadName);

 try {

 for(int i = 4; i > 0; i--) {

 System.out.println("Thread: " + threadName + ", " + i);

 // Let the thread sleep for a while.

 Thread.sleep(50);

 }

 } catch (InterruptedException e) {

 System.out.println("Thread " + threadName + " interrupted.");

 }

 System.out.println("Thread " + threadName + " exiting.");

 }

 public void start () {

 System.out.println("Starting " + threadName);

 if (t == null) {

 t = new Thread (this, threadName);

 t.start ();

 }

 }

}

public class TestThread {

 public static void main(String args[]) {

 RunnableDemo R1 = new RunnableDemo("Thread-1");

 R1.start();

 RunnableDemo R2 = new RunnableDemo("Thread-2");

 R2.start();

 }

}

This will produce the following result −

Output

Creating Thread-1

Starting Thread-1

Creating Thread-2

Starting Thread-2

Running Thread-1

Thread: Thread-1, 4

Running Thread-2

Thread: Thread-2, 4

Thread: Thread-1, 3

Thread: Thread-2, 3

Thread: Thread-1, 2

Thread: Thread-2, 2

Thread: Thread-1, 1

Thread: Thread-2, 1

Thread Thread-1 exiting.

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, Karaikal-609605

Thread Thread-2 exiting.

Create a Thread by Extending a Thread Class

The second way to create a thread is to create a new class that
extends Thread class using the following two simple steps. This approach provides
more flexibility in handling multiple threads created using available methods in
Thread class.

Step 1: You will need to override run() method available in Thread class. This
method provides an entry point for the thread and you will put your complete
business logic inside this method. Following is a simple syntax of run() method −

public void run()

Step 2: Once Thread object is created, you can start it by calling start() method,

which executes a call to run() method. Following is a simple syntax of start() method

−

void start();

Example

Here is the preceding program rewritten to extend the Thread −

class ThreadDemo extends Thread {

 private Thread t;

 private String threadName;

 ThreadDemo(String name) {

 threadName = name;

 System.out.println("Creating " + threadName);

 }

 public void run() {

 System.out.println("Running " + threadName);
 try {

 for(int i = 4; i > 0; i--) {

 System.out.println("Thread: " + threadName + ", " + i);
 // Let the thread sleep for a while.

 Thread.sleep(50);

 }

 } catch (InterruptedException e) {

 System.out.println("Thread " + threadName + " interrupted.");

 }

 System.out.println("Thread " + threadName + " exiting.");

 }

 public void start () {

 System.out.println("Starting " + threadName);

 if (t == null) {

 t = new Thread (this, threadName);

 t.start ();

 }
 }

}

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, Karaikal-609605

public class TestThread {

 public static void main(String args[]) {

 ThreadDemo T1 = new ThreadDemo("Thread-1");

 T1.start();

 ThreadDemo T2 = new ThreadDemo("Thread-2");

 T2.start();

 }

}

This will produce the following result −

Output

Creating Thread-1

Starting Thread-1

Creating Thread-2

Starting Thread-2

Running Thread-1

Thread: Thread-1, 4

Running Thread-2

Thread: Thread-2, 4

Thread: Thread-1, 3

Thread: Thread-2, 3

Thread: Thread-1, 2

Thread: Thread-2, 2

Thread: Thread-1, 1

Thread: Thread-2, 1

Thread Thread-1 exiting.

Thread Thread-2 exiting.

Thread Methods

Following is the list of important methods available in the Thread class.

Sl.
No.

Method & Description

1
public void start()

Starts the thread in a separate path of execution, then invokes the run() method on this Thread object.

2
public void run()

If this Thread object was instantiated using a separate Runnable target, the run() method is invoked on that
Runnable object.

3
public final void setName(String name)

Changes the name of the Thread object. There is also a getName() method for retrieving the name.

4
public final void setPriority(int priority)

Sets the priority of this Thread object. The possible values are between 1 and 10.

5
public final void setDaemon(boolean on)

A parameter of true denotes this Thread as a daemon thread.

6
public final void join(long millisec)

The current thread invokes this method on a second thread, causing the current thread to block until the second

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, Karaikal-609605

thread terminates or the specified number of milliseconds passes.

7
public void interrupt()

Interrupts this thread, causing it to continue execution if it was blocked for any reason.

8
public final boolean isAlive()

Returns true if the thread is alive, which is any time after the thread has been started but before it runs to
completion.

The previous methods are invoked on a particular Thread object. The following methods in the Thread class are
static. Invoking one of the static methods performs the operation on the currently running thread.

Sr.No. Method & Description

1
public static void yield()

Causes the currently running thread to yield to any other threads of the same priority that are waiting to be
scheduled.

2
public static void sleep(long millisec)

Causes the currently running thread to block for at least the specified number of milliseconds.

3
public static boolean holdsLock(Object x)

Returns true if the current thread holds the lock on the given Object.

4
public static Thread currentThread()

Returns a reference to the currently running thread, which is the thread that invokes this method.

5
public static void dumpStack()

Prints the stack trace for the currently running thread, which is useful when debugging a multithreaded application.

HTML tags, a simple applet program

HTML <applet> tag was used to embed the Java applet in an HTML document. This

element has been deprecated in HTML 4.0 and instead of it we can use <object> and newly

added element <embed>.

Syntax

<applet code="URL" height="200" width="100">.............</applet>

Example

<html>

<body>

 <p>Example of Applet Tag</p>

 <applet code="Shapes.class" align="right" height="200" width="300">

 Sorry! you need Java to see this

 </applet>

 </body>

</html>

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, Karaikal-609605

In the above HTML program Shapes.class is the class file of Shapes.java applet program.

After coded java program class file will be created. By using this class file we can run the

applet from the browser using <applet> tag.

--Dear students see Java Notes Module 2 (page

2) contains applet example, use that example here--

