
J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, Karaikal-609605

OBJECT ORIENTED PROGRAMMING USING JAVA
Paper Code: CSCS231

MODULE – IV

Files, Streams & I/O – Introduction – Files & Streams – Sequential Access

Text Files

Introduction

File handling in Java is defined as reading and writing data to a file. The particular file

class from the package called java.io allows us to handle and work with different formats of

files. Thus, if we want to use a file class, we need to create an object of that particular class

and should specify the filename or directory name.

Stream

A series of data is referred to as a stream. In Java, Stream is classified into two types,

i.e., Byte Stream and Character Stream. This package that supports stream input/output is

java.io, and it is vast. This package defines over seventy classes and interfaces, many of

which have a large number of methods.

The stream is the only representation of input or output that is maybe a source or

destination of the data. We can also write the data in the stream or read the particular data from the

stream. We can also visualize the stream of data as a sequence of bytes that flow out of the

program.

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, Karaikal-609605

Input and Output Streams

Writing data in the stream or to a stream is called an output stream. The particular

output stream can go to any device which can connect through a hard disk or maybe any

stream which can contain the sequence of bytes. An output stream also can be displayed on

any output screen, which has its true capability. Stream output to your display is output to

your command line. When you start writing something for your display screen, it can only

display the characters but not the graphical content. Graphical output requires more

specialized support.

You read data from an input stream. In principle, this can only be any source of serial

data but is typically a disk file, the keyboard, or a remote computer.

Further, under normal circumstances, the file input and output you write in a

machine can only be through a java application. It’s not available to java apples except

strictly to a limited extent.

This has two advantages: First, you don’t have to worry about the detailed

mechanics of each device, which are taken care of behind the scenes.

The streams which you write under the input and output can only have a small

amount of data like a single character, but not more than that. Transferring data to or from

a stream like this may be extremely inefficient, so a stream often equipped with a buffer in

memory, in which case it is called a buffered stream.

The Classes for Input and Output

The logical structure forms with the number of stream classes. Once you know how

they are related, you shouldn’t have much trouble using them. We will work through the

class hierarchy from the top down, so you will be able to see how the classes hang together

and how you can combine them in different ways to suit different situations.

java.io it contains all the classes for the support of the streams.

Class Description

Input Stream The base class for byte stream input operations.

Output Stream The base class for byte stream output operations.

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, Karaikal-609605

File Related Functions

Sequential Access Text Files

In Java, a File is an abstract data type. A named location used to store related

information is known as a File. There are several File Operations like creating a new File,

getting information about File, writing into a File, reading from a File and deleting a File. In

simple words, file handling means reading and writing data to a file.

The process for writing a file is basically quite simple. For writing a file, you will load

a file that you have created as one or more buffers and call a method for that particular

object to write data to that file which is encapsulated by the file stream.

To start with, you will be using the simplest write() method for a file channel that

writes the data contained in a single ByteBuffer object to a file. The number of bytes written

to the file is determined by the buffers position and limit when the write() method executes.

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, Karaikal-609605

The following example shows write data into a text file.

%%%%%%%%%%%%%% FW.java %%%%%%%%%%%%%%%

import java.io.FileWriter;

import java.io.IOException;

 public class FW {

 public static void main(String[] args)

 {

 try {

 FileWriter wr = new FileWriter("myfile.txt");

 wr.write("Files in Java are seriously good!!");

 wr.close();

 System.out.println("Successfully written.");

 }

 catch (IOException e) {

 System.out.println(e.getMessage());

 }

 }

}

Reading files

The process we use for reading a file is quite similar to writing a file. First, you will

obtain a file channel of an object from a file stream and also use the same channel to read

the data for one or more buffers. Initially, you will be using a channel object that you obtain

from a FileInputStream object to read a file. Later you will be using a FileChannel object

obtained from a RandomAccessFile object to read and write the same file.

Java FileWriter class is used to write character-oriented data to a file. It is character-

oriented class which is used for file handling in java.

Constructors of FileWriter class

Constructor Description

FileWriter(String file) Creates a new file. It gets file name in string.

FileWriter(File file) Creates a new file. It gets file name in File object.

https://www.javatpoint.com/java-file-class
https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/java-string
https://www.javatpoint.com/object-and-class-in-java

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, Karaikal-609605

Methods of FileWriter class

Method Description

void write(String text) It is used to write the string into FileWriter.

void write(char c) It is used to write the char into FileWriter.

void write(char[] c) It is used to write char array into FileWriter.

void flush() It is used to flushes the data of FileWriter.

void close() It is used to close the FileWriter.

The following example shows read a file.

%%%%%%%%%%%%%%%% FR.java %%%%%%%%%%%%%%

import java.io.FileReader;
import java.io.IOException;

public class FR {

 public static void main(String[] args)

 {

 try {

 FileReader fr = new FileReader("myfile.txt");

 int i;

 while ((i = fr.read()) != -1) {

 System.out.print((char)i);

 }

 fr.close();

 System.out.println("\nFile reading both done");

 }

 catch (IOException e) {

 System.out.println(e.getMessage());

 }

 }

}

