
1

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, Karaikal-609605

OBJECT ORIENTED PROGRAMMING USING JAVA

MODULE – II

Introduction to java applications – Introduction to classes, objects,

methods & Strings - Control statements – Arrays - constructor – function

overloading & overriding - Inheritance - Polymorphism – Interface – package -

exception handling

Introduction to java applications

Setting up the environment in Java

Java is a general-purpose computer programming language that is concurrent,

class-based, object-oriented, etc. Java applications are typically compiled

to bytecode that can run on any Java virtual machine (JVM) regardless of computer

architecture. The latest version is Java 19. Below are the environment settings for

both Linux and Windows. JVM, JRE, and JDK three are all platform-dependent

because the configuration of each Operating System is different.

 JDK(Java Development Kit): JDK is intended for software developers and

includes development tools such as the Java compiler, Javadoc, Jar, and a

debugger.

 JRE(Java Runtime Environment): JRE contains the parts of the Java libraries

required to run Java programs and is intended for end-users. JRE can be viewed

as a subset of JDK.

 JVM: JVM (Java Virtual Machine) is an abstract machine. It is a specification

that provides a runtime environment in which java bytecode can be executed.

https://www.geeksforgeeks.org/difference-between-byte-code-and-machine-code/

2

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, Karaikal-609605

JVMs are available for many hardware and software platforms.

Java program is a collection of objects, and these objects communicate through

method calls to each other to work together. Here is a brief discussion on the Classes

and Objects, Method, Instance variables, syntax, and semantics of Java.

Basic terminologies in Java

o class keyword is used to declare a class in Java.

o public keyword is an access modifier that represents visibility. It means

it is visible to all.

o static is a keyword. If we declare any method as static, it is known as the

static method. The core advantage of the static method is that there is

no need to create an object to invoke the static method.

o void is the return type of the method. It means it doesn't return any

value.

o main represents the starting point of the program.

o String args[] is used for command line argument. We will discuss it in

coming section.

o System.out.println() is used to print statement.

class Simple{

 public static void main(String args[]){

 System.out.println("Hello Java");

 }

}

Save the above file as Simple.java.

To compile: javac Simple.java

To execute: java Simple

Output
 Hello Java

Constructors

In Java, a constructor is similar to the method, It should be in class name. We

https://www.javatpoint.com/command-line-argument
https://www.javatpoint.com/java-tutorial

3

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, Karaikal-609605

can call the constructor when an instance of the class is created. Memory for the

object is allocated at the time of calling constructor.

It is a special type of method which is used to initialize the object.

Every time an object is created using the new() keyword, at least one

constructor is called.

It calls a default constructor if there is no constructor available in the class. In

such case, Java compiler provides a default constructor by default.

Types of constructors

Default Constructor / Empty Constructor

Parameterized Constructor

Constructor Overloading

Example: Default Constructor

class Bike{

 String type;

Bike(){

 System.out.println("Bike is created");

}

public static void main(String args[]){

Bike b1=new Bike();

}

}

In the above example program Bike(){} is the default constructor, It will call at the

time of b1 instance memory allocation.

Example: Parameterized Constructor

class Student{

 int id;

 String name;

 Student(int i, String n){

 id = i;

 name = n;

 }

 void display(){

System.out.println(id+" "+name);

https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/java-constructor#constypes
https://www.javatpoint.com/java-constructor#consdef
https://www.javatpoint.com/java-constructor#conspara
https://www.javatpoint.com/java-constructor#consoverloading
https://www.javatpoint.com/java-constructor#conspara

4

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, Karaikal-609605

}

 public static void main(String args[]){

 Student s1 = new Student(111,"Karan");

 Student s2 = new Student(222,"Aryan");

 s1.display();

 s2.display();

 }

}

In the above example Student(int i, String n) is the parameterized constructor, we

can send data to the newly created object through this type of constructor.

Methods

 We used functions in C and C++ programming. But in java It is called

methods.

There are two types of method creation in java.

1. Static method

This type of method we can call without instance variable.

2. Non static method

We must use instance variable at the time of calling non static methods.

However it is the member of the object.

Creating Method

Method definition consists of a method header and a method body. The same is

shown in the following syntax −

General Syntax

modifier returnType nameOfMethod (Parameter List) {

 // method body

}

The syntax shown above includes −

modifier − It defines the access type of the method and it is optional to use.

returnType − Method may return a value.

nameOfMethod − This is the method name. The method signature consists of the

5

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, Karaikal-609605

method name and the parameter list.

Parameter List − The list of parameters, it is the type, order, and number of

parameters of a method. These are optional, method may contain zero parameters.

method body − The method body defines what the method does with the

statements.

Considering the following example to explain the syntax of a method −

Syntax

public static int methodName(int a, int b) {

 // body

}

Here,

o public static − modifier

o int − return type

o methodName − name of the method

o int a, int b − list of parameters

Packages in Java

Java package is a group of similar types of classes, interfaces and sub-packages

or we can say Packages in Java is a mechanism to encapsulate a group of classes,

interfaces and sub packages which is used to providing access protection and

namespace management and to make searching/locating and usage of classes,

interfaces, enumerations and annotations easier.

Package in Java can be categorized in two form, built-in package, and user-

defined package.

There are many built-in packages such as java, lang, awt,io, util, javax, swing,

net, sql etc. Here, we will have the detailed learning of creating and using user-defined

packages.

6

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, Karaikal-609605

The library is divided into packages and classes. Meaning you can either import a

single class (along with its methods and attributes), or a whole package that contain all

the classes that belong to the specified package.

To use a class or a package from the library, you need to use the import keyword:

Syntax

import package.name.Class; // Import a single class

import package.name.*; // Import the whole package

The following Example statement is show how to import object from package.

import java.util.Scanner;

In the example above, java.util is a package, while Scanner is a class of the java.util

package. To use the Scanner class, create an object of the class and use any of the

available methods found in the Scanner class documentation. In our example, we will

use the nextLine() method, which is used to read a complete line:

Example

Using the Scanner class to get user input:

import java.util.Scanner;

class MyClass {

 public static void main(String[] args) {

7

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, Karaikal-609605

 Scanner myObj = new Scanner(System.in);

 System.out.println("Enter username");

 String userName = myObj.nextLine();

 System.out.println("Username is: " + userName);

 }

}

Advantage of Java Package

1) Java package is used to categorize the classes and interfaces so that they can be

easily maintained.

2) Java package provides access protection.

3) In real life situation there may arise scenarios where we need to define files of the

same name. This may lead to name-space collisions. Java package removes naming

collision.

4) Reusability: Reusability of code is one of the most important requirements in the

software industry. Reusability saves time, effort and also ensures consistency. A class

once developed can be reused by any number of programs wishing to incorporate the

class in that particular program.

5) Easy to locate the files.

Exception Handling

When executing Java code, different errors can occur: coding errors made by the

programmer, errors due to wrong input, or other unforeseeable things.

When an error occurs, Java will normally stop and generate an error message. The

technical term for this is: Java will throw an exception (throw an error).

Java try and catch

The try statement allows you to define a block of code to be tested for errors while it

is being executed. The catch statement allows you to define a block of code to be

executed, if an error occurs in the try block.

The try and catch keywords come in pairs:

8

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, Karaikal-609605

Syntax

try {

 // Block of code to try

}

catch(Exception e) {

 // Block of code to handle errors

}

Consider the following example:

This will generate an error, because myNumbers[10] does not exist.

public class Main {

 public static void main(String[] args) {

 int[] myNumbers = {1, 2, 3};

 System.out.println(myNumbers[10]); // error!

 }

}

The output will be something like this:

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 10

 at Main.main(Main.java:4)

If an error occurs, we can use try...catch to catch the error and execute some code to

handle it:

Example

public class Main {

 public static void main(String[] args) {

 try {

 int[] myNumbers = {1, 2, 3};

 System.out.println(myNumbers[10]);

 } catch (Exception e) {

 System.out.println("Array subscript error.");

 }

9

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, Karaikal-609605

 System.out.println(“Thank you”);

 }

}

 The following output shows Thank you output is to continuous execution of the

program.

The output will be:

Array subscript error.

Thank you

Polymorphism / Overloading

The word polymorphism means having many forms. In simple words, we can

define polymorphism as the ability of a message to be displayed in more than one

form.

Method Overloading: When there are multiple functions with the same name

but different parameters then these functions are said to be overloaded. Functions can

be overloaded by change in the number of arguments or/and a change in the type of

arguments.

class Helper

{

 void add(int a,int b)

{

 int z;

 z=a+b;

 System.out.println(z);

}

 void add(int a,int b,int c)

{

 int z;

 z=a+b+c;

 System.out.println(z);

}

void add(int a,int b,int c,int d)

{

 int z;

 z=a+b+c+d;

 System.out.println(z);

10

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, Karaikal-609605

}

public static void main(String s[])

{

Helper a=new Helper();

a.add(12,34);

 a.add(56,67,34);

 a.add(2,4,5,6);

}

}

In the above example shows add() method overloaded with different number of

arguments.

class Helper2

{

 void add(int a,int b)

{

 int z;

 z=a+b;

 System.out.println(z);

}

 void add(double a,double b)

{

 double z;

 z=a+b;

 System.out.println(z);

}

public static void main(String s[])

{

Helper2 a=new Helper2();

a.add(12,34);

 a.add(12.256, 13.456);}

}

The above Helper2 class shows add() method can be overloaded with different

types arguments.

Overwriting

In the previous chapter, we talked about superclasses and subclasses. If a class inherits

a method from its superclass, then there is a chance to override the method provided

that it is not marked final.

The benefit of overriding is: ability to define a behavior that's specific to the subclass

type, which means a subclass can implement a parent class method based on its

requirement.

11

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, Karaikal-609605

In object-oriented terms, overriding means to override the functionality of an existing

method.

Example

Let us look at an example.

class Animal {

 public void move() {

 System.out.println("Animals can move");

 }

}

class Dog extends Animal {

 public void move() {

 System.out.println("Dogs can walk and run");

 }

}

public class TestDog {

 public static void main(String args[]) {

 Animal a = new Animal(); // Animal reference and object

 Animal b = new Dog(); // Animal reference but Dog object

 a.move(); // runs the method in Animal class

 b.move(); // runs the method in Dog class

 }

}

This will produce the following result −

Output

Animals can move

Dogs can walk and run

Control Statements

If is one of the control statement

Use the if statement to specify a block of Java code to be executed if a condition is

true.

Syntax

if (condition) {

 // block of code to be executed if the condition is true

}

Note that if is in lowercase letters. Uppercase letters (If or IF) will generate an error.

12

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, Karaikal-609605

In the example below, we test two values to find out if 20 is greater than 18. If the

condition is true, print some text:

Example

if (20 > 18) {

 System.out.println("20 is greater than 18");

}

Use the else statement to specify a block of code to be executed if the condition is

false.

Syntax

if (condition) {

 // block of code to be executed if the condition is true

} else {

 // block of code to be executed if the condition is false

}

Example

int time = 20;

if (time < 18) {

 System.out.println("Good day.");

} else {

 System.out.println("Good evening.");

}

// Outputs "Good evening."

Looping Statement

A loop statement allows us to execute a statement or group of statements multiple

times and following is the general form of a loop statement in most of the

programming languages −

Java programming language provides the following types of loop to handle looping

requirements. Click the following links to check their detail.

1 while loop

Repeats a statement or group of statements while a given condition is true. It tests the

condition before executing the loop body.

Syntax

while (condition) {

 // code block to be executed

}

In the example below, the code in the loop will run, over and over again, as long as a

variable (i) is less than 5:

Example

13

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, Karaikal-609605

int i = 0;

while (i < 5) {

 System.out.println(i);

 i++;

}

2 for loop

Execute a sequence of statements multiple times and abbreviates the code that

manages the loop variable.

Syntax

for (statement 1; statement 2; statement 3) {

 // code block to be executed

}

Statement 1 is executed (one time) before the execution of the code block.

Statement 2 defines the condition for executing the code block.

Statement 3 is executed (every time) after the code block has been executed.

The example below will print the numbers 0 to 4:

Example

for (int i = 0; i < 5; i++) {

 System.out.println(i);

}

Statement 1 sets a variable before the loop starts (int i = 0).

Statement 2 defines the condition for the loop to run (i must be less than 5). If the

condition is true, the loop will start over again, if it is false, the loop will end.

Statement 3 increases a value (i++) each time the code block in the loop has been

executed.

3 do...while loop

Loop control statements change execution from its normal sequence. When execution

leaves a scope, all automatic objects that were created in that scope are destroyed.

Syntax

do {

 // code block to be executed

}

while (condition);

The example below uses a do/while loop. The loop will always be executed at least

once, even if the condition is false, because the code block is executed before the

condition is tested:

Example

14

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, Karaikal-609605

int i = 0;

do {

 System.out.println(i);

 i++;

}

while (i < 5);

Java supports the following control statements.

Sr.No. Control Statement & Description

1 break statement

Terminates the loop or switch statement and transfers execution to the statement

immediately following the loop or switch.

This example stops the loop when i is equal to 4:

Example

for (int i = 0; i < 10; i++) {

 if (i == 4) {

 break;

 }

 System.out.println(i);

}

2 continue statement

Causes the loop to skip the remainder of its body and immediately retest its condition

prior to reiterating.

This example skips the value of 4:

Example

for (int i = 0; i < 10; i++) {

 if (i == 4) {

 continue;

 }

 System.out.println(i);

}

Array

Java provides a data structure, the array, which stores a fixed-size sequential

collection of elements of the same type. An array is used to store a collection of data,

but it is often more useful to think of an array as a collection of variables of the same

type.

Declaring an array variable, creating an array, and assigning the reference of the array

15

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, Karaikal-609605

to the variable can be combined in one statement, as shown below −

dataType[] arrayRefVar = new dataType[arraySize];

Alternatively you can create arrays as follows −

dataType[] arrayRefVar = {value0, value1, ..., valuek};

The array elements are accessed through the index. Array indices are 0-based; that is,

they start from 0 to arrayRefVar.length-1.

Example

Following statement declares an array variable, myList, creates an array of 10

elements of double type and assigns its reference to myList −

double[] myList = new double[10];

Following picture represents array myList. Here, myList holds ten double values and

the indices are from 0 to 9.

public class TestArray {

 public static void main(String[] args) {

 double[] myList = {1.9, 2.9, 3.4, 3.5};

 // Print all the array elements

 for (int i = 0; i < myList.length; i++) {

 System.out.println(myList[i] + " ");

 }

 // Summing all elements

 double total = 0;

 for (int i = 0; i < myList.length; i++) {

 total += myList[i];

 }

 System.out.println("Total is " + total);

 // Finding the largest element

 double max = myList[0];

16

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, Karaikal-609605

 for (int i = 1; i < myList.length; i++) {

 if (myList[i] > max) max = myList[i];

 }

 System.out.println("Max is " + max);

 }

}

This will produce the following result −

Output

1.9

2.9

3.4

3.5

Total is 11.7

Max is 3.5

Interfaces

An interface is a reference type in Java. It is similar to class. It is a collection of

abstract methods. A class implements an interface, thereby inheriting the abstract

methods of the interface.

Along with abstract methods, an interface may also contain constants, default

methods, static methods, and nested types. Method bodies exist only for default

methods and static methods.

Writing an interface is similar to writing a class. But a class describes the

attributes and behaviors of an object. And an interface contains behaviors that a class

implements.

Unless the class that implements the interface is abstract, all the methods of the

interface need to be defined in the class.

An interface is similar to a class in the following ways −

An interface can contain any number of methods.

An interface is written in a file with a .java extension, with the name of the interface

matching the name of the file.

The byte code of an interface appears in a .class file.

Interfaces appear in packages, and their corresponding bytecode file must be in a

directory structure that matches the package name.

However, an interface is different from a class in several ways, including −

17

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, Karaikal-609605

You cannot instantiate an interface.

An interface does not contain any constructors.

All of the methods in an interface are abstract.

An interface cannot contain instance fields. The only fields that can appear in an

interface must be declared both static and final.

An interface is not extended by a class; it is implemented by a class.

An interface can extend multiple interfaces.

Declaring Interfaces
The interface keyword is used to declare an interface. Here is a simple example to

declare an interface −

Example
Following is an example of an interface −

/* File name : NameOfInterface.java */

import java.lang.*;

// Any number of import statements

public interface NameOfInterface {

 // Any number of final, static fields

 // Any number of abstract method declarations\

}

Interfaces have the following properties −

An interface is implicitly abstract. You do not need to use the abstract keyword while

declaring an interface.

Each method in an interface is also implicitly abstract, so the abstract keyword is not

needed.

Methods in an interface are implicitly public.

Example

/* File name : Animal.java */

interface Animal {

 public void eat();

 public void travel();

}

Implementing Interfaces

When a class implements an interface, you can think of the class as signing a contract,

18

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC, Karaikal-609605

agreeing to perform the specific behaviors of the interface. If a class does not perform

all the behaviors of the interface, the class must declare itself as abstract.

A class uses the implements keyword to implement an interface. The implements

keyword appears in the class declaration following the extends portion of the

declaration.

Example

/* File name : Mammal.java */

public class Mammal implements Animal {

 public void eat() {

 System.out.println("Mammal eats");

 }

 public void travel() {

 System.out.println("Mammal travels");

 }

 public int noOfLegs() {

 return 0;

 }

 public static void main(String args[]) {

 Mammal m = new Mammal();

 m.eat();

 m.travel();

 }

}

This will produce the following result −

Output

Mammal eats

Mammal travels

