
1

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC,

KARAIKAL-609 605.

Module - V
Pointers: Declarations and initialization of pointer variables ,Accessing pointer

variables, Passing to a function. Operations on pointers, pointer and arrays. Array of

pointers, Pointer to Functions. Data Files: Open, close, create, process unformatted data

files.

Pointers
A pointer is a variable whose value is the address of another variable, i.e., direct

address of the memory location. Like any variable or constant, you must declare a

pointer before using it to store any variable address. The general form of a pointer
variable declaration is –

type *var-name;
Here, type is the pointer's base type; it must be a valid C data type and var-name

is the name of the pointer variable. The asterisk * used to declare a pointer is the same
asterisk used for multiplication. However, in this statement the asterisk is being used to

designate a variable as a pointer. Take a look at some of the valid pointer declarations −

int *ip; pointer to an integer
double *dp; pointer to a double

float *fp; pointer to a float

char *ch pointer to a character

The actual data type of the value of all pointers, whether integer, float, character,

or otherwise, is the same, a long hexadecimal number that represents a memory address.
The only difference between pointers of different data types is the data type of the

variable or constant that the pointer points to.

Pointer to function

C programming allows passing a pointer to a function. To do so, simply declare
the function parameter as a pointer type.

Following is a simple example where we pass an unsigned long pointer to a

function and change the value inside the function which reflects back in the calling
function −

Sizeof()

2

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC,

KARAIKAL-609 605.

Pointer Expressions and Pointer Arithmetic

Pointer and Array
 All the elements in array are stored in consecutive contiguous memory locations in the
memory

 We can access entire array through single pointer variable using its address location.
Since the array elements are stored in to consecutive location.

#include <stdio.h>
void main()
{
 int *p;
 int val[7] = { 11, 22, 33, 44, 55, 66, 77 } ;
 p = &val[0];
 for (int i = 0 ; i<7 ; i++)
 {
 printf("val[%d]: value is %d and address is %p\n", i, *p, p);
 p++;
 }
}
Output:
val[0]: value is 11 and address is 88820
val[1]: value is 22 and address is 88824
val[2]: value is 33 and address is 88828
val[3]: value is 44 and address is 88832
val[4]: value is 55 and address is 88836
val[5]: value is 66 and address is 88840
val[6]: value is 77 and address is 88844

While using pointers with array, the data type of the pointer must match with the data type
of the array.

Data

Address

3

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC,

KARAIKAL-609 605.

Array of pointers:

“Array of pointers” is an array of the pointer variables. It is also known as pointer arrays.

Syntax:

int *var_name[array_size];

Declaration of an array of pointers:

 int *ptr[3];

We can make separate pointer variables which can point to the different values or we can

make one integer array of pointers that can point to all the values.

Example: Array of pointers.

#include <stdio.h>
const int SIZE = 3;
void main()
{
 // creating an array
 int arr[] = { 1, 2, 3 };

 // we can make an integer pointer array to
 // storing the address of array elements

 int i, *ptr[SIZE];
 for (i = 0; i < SIZE; i++) {
 // assigning the address of integer.
 ptr[i] = &arr[i];
 }
 // printing values using pointer
 for (i = 0; i < SIZE; i++) {

 printf("Value of arr[%d] = %d\n", i, *ptr[i]);
 }
}

Output:
Value of arr[0] = 1
Value of arr[1] = 2
Value of arr[2] = 3

Data Files

The last chapter explained the standard input and output devices handled by C
programming language. This chapter cover how C programmers can create, open, close text

or binary files for their data storage.

A file represents a sequence of bytes, regardless of it being a text file or a binary file. C
programming language provides access on high level functions as well as low level
OSlevelOSlevel calls to handle file on your storage devices. This chapter will take you

4

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC,

KARAIKAL-609 605.

FILE *fopen(const char * filename, const char * mode);

int fclose(FILE *fp);

through the important calls for file management.

Opening Files

You can use the fopen function to create a new file or to open an existing file. This call
will initialize an object of the type FILE, which contains all the information necessary to

control the stream. The prototype of this function call is as follows −

Here, filename is a string literal, which you will use to name your file, and

access mode can have one of the following values −

Sr.No. Mode &
Description

1 r - Opens an existing text file for reading purpose.

2 w- Opens a text file for writing. If it does not exist, then a new file is
created. Here your program will start writing content from the beginning of

the file.

3 a - Opens a text file for writing in appending mode. If it does not exist,
then a new file is created. Here your program will start appending content
in the existing file content.

4 r+ Opens a text file for both reading and writing.

5 w+ Opens a text file for both reading and writing. It first truncates the file
to zero length if it exists, otherwise creates a file if it does not exist.

6 a+ Opens a text file for both reading and writing. It creates the file if it
does not exist. The reading will start from the beginning but writing can

only be appended.

Closing a File

To close a file, use the fclose function. The prototype of this function is −

The fclose−− function returns zero on success, or EOF if there is an error in closing the

file. This function actually flushes any data still pending in the buffer to the file, closes the

file, and releases any memory used for the file. The EOF is a constant defined in the

header file stdio.h.

5

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC,

KARAIKAL-609 605.

There are various functions provided by C standard library to read and write a file, character

by character, or in the form of a fixed length string.

Writing a File

Following is the simplest function to write individual characters to a stream −

int fputc(int c, FILE *fp);

The function fputc writes the character value of the argument c to the output stream

referenced by fp. It returns the written character written on success otherwise EOF if

there is an error. You can use the following functions to write a null-terminated string to a

stream −

int fputs(const char *s, FILE *fp);

The function fputs writes the string s to the output stream referenced by fp. It returns a

non- negative value on success, otherwise EOF is returned in case of any error. You can

use int fprintfFILE∗ fp,constchar∗ format,...FILE∗ fp,constchar∗ format,... function as well to

write a string into a file. Try the following example.

Make sure you have /tmp directory available. If it is not, then before proceeding, you must

create this directory on your machine.

#include
<stdio.h> main()
{

FILE *fp;
fp = fopen("/tmp/test.txt", "w+");
fprintf(fp, "This is testing for
fprintf...\n"); fputs("This is testing for
fputs...\n", fp); fclose(fp);

}
When the above code is compiled and executed, it creates a new file test.txt in /tmp directory

and writes two lines using two different functions. Let us read this file in the next section.

Reading a File

Given below is the simplest function to read a single character from a file −

int fgetc(FILE * fp);

The fgetc function reads a character from the input file referenced by fp. The return value is

the character read, or in case of any error, it returns EOF. The following function allows to

read a string from a stream −

char *fgets(char *buf, int n, FILE *fp);

The functions fgets reads up to n-1 characters from the input stream referenced by fp. It

copies the read string into the buffer buf, appending a null character to terminate the

string.

6

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC,

KARAIKAL-609 605.

If this function encounters a newline character '\n' or the end of the file EOF before

they have read the maximum number of characters, then it returns only the characters

read up to that point including the new line character. You can also use int

fscanfFILE∗ fp,constchar∗ format,...FILE∗ fp,constchar∗ format,... function to read strings from

a file, but it stops reading after encountering the first space character.

#include

<stdio.h> main()

{

FILE *fp;

char buff[255];

fp = fopen("/tmp/test.txt", "r");

fscanf(fp, "%s", buff);

printf("1 : %s\n", buff);

fgets(buff, 255,

(FILE*)fp); printf("2:

%s\n", buff); fgets(buff,

255, (FILE*)fp);

printf("3: %s\n", buff);

fclose(fp);

}

When the above code is compiled and executed, it reads the file created in the previous

section and produces the following result −

1 : This

2: is testing for fprintf...

3: This is testing for fputs...

Let's see a little more in detail about what happened here. First, fscanf read just This

because after that, it encountered a space, second call is for fgets which reads the

remaining line till it encountered end of line. Finally, the last call fgets reads the second

line completely.

Binary I/O Functions

There are two functions, that can be used for binary input and output −

size_t fread(void *ptr, size_t size_of_elements, size_t number_of_elements, FILE *a_file);

7

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC,

KARAIKAL-609 605.

size_t fwrite(const void *ptr, size_t size_of_elements, size_t number_of_elements, FILE
*a_file);

Both of these functions should be used to read or write blocks of memories - usually

arrays or structures.

Random Access to File

There is no need to read each record sequentially, if we want to access a

particular record.C supports these functions for random access file processing.

1. fseek()
2. ftell()

3. rewind()

fseek():
This function is used for seeking the pointer position in the file at the specified

byte.
Syntax: fseek(file pointer, displacement, pointer position);

Where
file pointer ---- It is the pointer which points to the file.

displacement ---- It is positive or negative.This is the number of bytes which

are skipped backward (if negative) or forward(if positive) from the current

position.This is attached with L because this is a long integer.

ftell()

This function returns the value of the current pointer position in the file.The value is count

from the beginning of the file.

