
J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC,

Module – III

Functions: Defining and accessing: Passing arguments, Function
prototypes, Function calls- Categories of functions- Nesting of functions-
Recursion. Use of library functions, Scope , Visibility and Lifetime of variables.

C - Functions
A function is a group of statements that together perform a task. Every C

program has at least one function, which is main(), and all the most trivial

programs can define additional functions.

You can divide up your code into separate functions. How you divide up

your code among different functions is up to you, but logically the division is

such that each function performs a specific task.

A function declaration tells the compiler about a function's name,

return type, and parameters. A function definition provides the actual body

of the function.

Defining a Function

The general form of a function definition in C programming language is

as follows − return_type function_name(parameter list) {

body of the function

}

A function definition in C programming consists of a function header and a

function body. Here are all the parts of a function −

Return Type − A function may return a value. The return_type is the data type

of the value the function returns. Some functions perform the desired

operations without returning a value. In this case, the return_type is the

keyword void.

Function Name − This is the actual name of the function. The function

name and the parameter list together constitute the function signature.

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC,

Parameters − A parameter is like a placeholder. When a function is invoked,

you pass a value to the parameter. This value is referred to as actual parameter

or argument. The parameter list refers to the type, order, and number of the

parameters of a function. Parameters are optional; that is, a function may

contain no parameters.

Function Body − The function body contains a collection of statements that

define what the function does.

Example

Given below is the source code for a function called max(). This function takes

two parameters num1 and num2 and returns the maximum value between the

two −

int max(int num1, int num2)

{

int result;

if (num1 > num2)

result = num1;

else

result = num2; return result;

}

Function Arguments

If a function is to use arguments, it must declare variables that accept

the values of the arguments. These variables are called the formal parameters

of the function.

Formal parameters behave like other local variables inside the function

and are created upon entry into the function and destroyed upon exit.

While calling a function, there are two ways in which arguments can be

passed to a function –

Sr.N
o.

Call Type & Description

1 Call by value

This method copies the actual value of an argument into the formal parameter of

the function. In this case, changes made to the parameter inside the function

have no effect on the argument.

2 Call by reference

This method copies the address of an argument into the formal parameter.

Inside the function, the address is used to access the actual argument used in

the call. This means that changes made to the parameter affect the argument.

https://www.tutorialspoint.com/cprogramming/c_function_call_by_value.htm
https://www.tutorialspoint.com/cprogramming/c_function_call_by_reference.htm

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC,

By default, C uses call by value to pass arguments. In general, it means

the code within a function cannot alter the arguments used to call the function.

Function prototype
The function prototypes are used to tell the compiler about the number of

arguments and about the required data types of a function parameter, it also tells about

the return type of the function. By this information, the compiler cross-checks the

function signatures before calling it. If the function prototypes are not mentioned, then

the program may be compiled with some warnings, and sometimes generate some

strange output.

Example Code

#include<stdio.h>

void function(int); //prototype

main() {

 function(50);

}

void function(int x) {

 printf("The value of x is: %d", x);

}

Output

The value of x is: 50

Categories of Functions
Depending on whether arguments are present or not and whether a value

is returned or not, functions are categorized into −

 Functions without arguments and without return values

 Functions without arguments and with return values

 Functions with arguments and without return values

 Functions with arguments and with return values

C Recursion
In this tutorial, you will learn to write recursive functions in C programming with the help of
an example.

A function that calls itself is known as a recursive function. And, this technique is known as
recursion.

The recursion continues until some condition is met to prevent it.

To prevent infinite recursion, if...else statement (or similar approach) can be used where one

branch makes the recursive call, and other doesn't.

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC,

Example: Factorial function using recursion

#include<stdio.h>

long factorial(int n)
{
 if (n == 0)
 return 1;
 else
 return(n * factorial(n-1));
}

void main()
{
 int number;
 long fact;
 printf("Enter a number: ");
 scanf("%d", &number);

 fact = factorial(number);
 printf("Factorial of %d is %ld\n", number, fact);
 return 0;
}

Initially, the factorial () is called from the main() function with number passed as an

argument.

 5! = 5*4*3*2*1 = 120

Library functions are built-in functions

Library functions are built-in functions that are grouped together and placed in a

common location called library. Each function here performs a specific operation. We

can use this library functions to get the pre-defined output.

All C standard library functions are declared by using many header files. These library

functions are created at the time of designing the compilers. We include the header files

in our C program by using #include<filename.h>. Whenever the program is run and

executed, the related files are included in the C program.

Header File Functions

Some of the header file functions are as follows −

stdio.h − It is a standard i/o header file in which Input/output functions are declared

conio.h − This is a console input/output header file.

string.h − All string related functions are in this header file.

stdlib.h − This file contains common functions which are used in the C programs.

math.h − All functions related to mathematics are in this header file.

time.h − This file contains time and clock related functions.Built functions in stdio.h

J. JAGADEESAN, ASST. PROFESSOR OF COMPUTER SCIENCE, AAGASC,

C - Scope of variable
A scope in any programming is a region of the program where a defined

variable can have its existence and beyond that variable it cannot be accessed. There

are three places where variables can be declared in C programming language −

 Inside a function or a block which is called local variables.
 Outside of all functions which is called global variables.

 In the definition of function parameters which are called formalparameters.

Let us understand what are local and global variables, and formalparameters.

Local Variables
Variables that are declared inside a function or block are called local variables.

They can be used only by statements that are inside that function or block of code.

Local variables are not known to functions outside their own. The following example

shows how local variables are used. Here all the variables a, b, and c are local to

main() function.

Global Variables

Global variables are defined outside a function, usually on top of the program.

Global variables hold their values throughout the lifetime of your program and they

can be accessed inside any of the functions defined for the program. A global variable

can be accessed by any function. That is, a global variable is available for use

throughout your entire program after its declaration. The following program show

how global variables are used in a program.

#include <stdio.h>

/* global variable declaration */

int g;

void main () {

/* local variable

declaration */ int

a, b;

/* actual

initializati

on */ a =

10;

b = 20;

g = a + b;

printf ("value of a = %d, b = %d and g = %d\n", a, b, g);

}

